Designs Factors for Flexible and Rigid Pavement Design

Workshop & Lectures on Pavement Engineering, Maintenance and Management

References

- Pavement Analysis and Design, Y.H. Huang, 2004
- Principles of Pavement Design, Yoder and Witczak, 1975
- Manual for Professor Training Course in Asphalt Technology, National Center for Asphalt Technology
- National Highway Institute (NHI) Training Course 131064A, Introduction to Mechanistic Design of New and Rehabilitated Pavements

Design Factors

- Traffic and Loading
- Materials
- Environment
- Failure Criteria
- Reliability

Traffic

- Primary Design Input
- Consideration
 - Traffic Volume
 - Mixed Traffic
 - Variable Vehicle and Axle Weights
 - Predicting Future Traffic
 - Lane Distributions

Traffic Volume

- AADT is the average daily traffic volume in all lanes in both directions
- AADT = (total yearly traffic volume) / 365
- T = percentage of truck

Mixed Traffic

Concept of Equivalent Single Axle Loads (ESALs)

- Convert mixed traffic into equivalent 80-kN (18-kip) single axles
- Equivalent axles based on loss in serviceability measured at the AASHO Road Test
- Load equivalent factors used for the conversion

Relative Damage

AASHO Road Test - Empirical Relationship

4th Power Law

Equivalent Axle Load Factor

- Defines the damage to pavement by any axle load relative to the damage induced by a single load (18 kip).
- Design is based on number of passes of single axle
- Equivalent load factor used depends on pavement conditions.
- Load factors are based on experience but can be derived theoretically.
- AASHO is the most commonly used procedure.

m = number of axle group,

$$ESAL = \sum_{i=1}^{m} F_i n_i$$
 i = axle load group, F_i = equivalent axle

F_i = equivalent axle load factor,

n = number of passes.

Flexible Pavement

AASHTO Equivalent Factors:

$$\log\left(\frac{W_{tx}}{W_{t18}}\right) = 4.79\log(19) - 4.79\log(L_x + L_2) + 4.33\log L_2 + \frac{G_t}{\beta_x} - \frac{G_t}{\beta_{18}}$$

$$EALF = \left(\frac{W_{t18}}{W_{trx}}\right)$$

Theoretical Analysis: there are different criteria proposed by different organizations.

- Asphalt Institute (failure criterion):
- Deacon (1960) (layer theory):

$$N_f = f_1(\varepsilon_t)^{-f_2} (E_1)^{-f_3}$$

$$EALF = \left(\frac{W_{t18}}{W_{ttx}}\right) = \left(\frac{\varepsilon_x}{\varepsilon_{18}}\right)^4$$

15

Theoretical Analysis (cond't):

$$EALF = \left(\frac{L_x}{18}\right)^4 \qquad EALF = \left(\frac{L_x}{L_s}\right)^4$$

criterion based on permanent deformation:

 W_{t18} = number of single loada pplication to time, t

 W_{tx} = number of x - axle load applications at the end of time, t

 ε_x = tensile stress at the bottom of asp. layer due to x - axle load,

 $N_d = f_4(\varepsilon_c)^{-f_5}$ ε_{18} = tensile stress at the bottom of asp. layer due to 18 kip axle load,

 L_x = the load in kip on one signle axle,

 $L_2 = axle code, 1, 2,...$

16

Determining Vehicle Factors

- Average damaging effect of vehicle
- Consider axle weight distribution for particular vehicle type

Example – Truck Equivalency Factor

-			-		-
Axle Load, kips	LEF	Number of Axles			A18 Kip
					EAL's
Singles					
3-5	0.002	X	1	=	0.002
5-7	0.01	X	5	=	0.05
7-9	0.034	X	15	=	0.51
9-11	0.088	X	57	=	5.016
11-13	0.189	X	63	=	11.907
13-15	0.36	X	17	=	6.12
23-25	3.03	X	3	=	9.09
Tandems					
27-29	0.495	X	50	=	24.75
29-31	0.658	X	72	=	47.376
31-33	0.857	X	85	=	72.845
33-35	1.09	X	120	=	130.8
35-37	1.38	X	25	=	34.5
			Total A18s	=	342.966
ESAL Vehicle Factor=	Total A18s	=	342.966	=	2.078
	# of Trucks		165		<i>†</i>

18

ESALs/Vehicle

Predicting Future Traffic

- · How fast will traffic grow?
- What is the design level of traffic?
- · Examine historical trends
 - Develop best estimate of future growth rate
- Apply growth factor to current volume

Growth Factor =
$$\frac{(1+g)^n - 1}{g}$$

- Assumptions
 - There is steady growth in traffic volumes
 - All other distributions remains relatively constant over the design period

Lane and Directional Distributions

- Typically design for 'heaviest' loaded lane
- Develop best information regarding lane distribution

Lane and Directional Distributions

- Typical Assumptions
 - Directional distribution = 50%
 - Lane Distribution

# Lanes/Direction	%Traffic In Design Lane		
1	100		
2	80-100		
3	60-80		
4	50-75		

2

Example of Lane Distribution					
ADT 20,000	ADT 60,000				
75% trucks →	53% trucks				
25% trucks →	39% trucks				
	8% trucks				
23	Design for worst case!!				

Total Design Life ESAL

 The design life or performance period is the cumulative expected 18-kip ESAL

$$ESAL = \left(\sum_{i=1}^{m} p_{i} F_{i}\right) (ADT)_{0}(T)(A)(G)(D)(L)(365)(Y)$$

p_i = percentage of total repetitions for the ith group

 F_i = EALF for the ith load group

(ADT)₀ = average daily traffic at the start of the design period

T = percentage of trucks in the ADT

A = average number of axles per truck

G = growth factor

D = directional distribution factor

L = lane distribution factor

Y = design period in years

Load Spectra

- Deal with load variability directly
 - Load configurations
 - Tire pressures
 - Axle spacing
- Use mechanistic analysis to predict state of stress beneath each load
 - Empirically relate stresses to performance

Sources of Traffic Data

- Traffic Data Monitoring Systems
 - Automatic traffic recorders (ATR)
 - Automatic vehicle classification (AVC)
 - Determine configuration of vehicle and divide vehicles into different classes
 - Weigh-in-motion (WIM)
 - Axle weights/counts and vehicle classification

Materials

- Asphalt Materials
- PCC Materials
- Cementitiously Stabilized Materials
- Non-stabilized granular base/subbase
- Subgrade soils
- Bedrock

Asphalt Materials

- •Resilient Modulus
- Dynamic Modulus
- Fatigue Characteristics
- Permanent Deformation

Asphalt Modulus

- Function of
 - Temperature
 - Rate of loading
 - Age
 - Volumetric properties
- Use of time-temperature superposition to determine "master curve"
- As the temperature increases, the modulus decreases
- As loading time increases, the modulus decreases
- As HMA ages with time, the modulus increases

Asphalt Modulus

- Resilient Modulus
 - Compression
 - Indirect Tension
- Dynamic Modulus
 - Measured-Compression
 - Calculated from regression equation

31

Test Condition

- Sample size: 4in. (102mm) in diameter and 8in. (203mm) in height
- Sample conditioning 50-200 cycles to ensure uniform deformation
- Test at 3 temperatures: 41F, 77F, and 104F (5, 25, and 40C)
- 20psi (138kPa) haversine loading with a duration of 0.1s and a rest of 0.9s

34

IDT Test for Mr

$$M_r = \frac{P(\nu + 0.2734)}{\delta t}$$

Test Condition

- ASTM(1989b) D4123-82
- Sample size: 4in. (102mm) in diameter and 2.5in. (64mm) thick
- Sample conditioning 50-200 cycles to ensure uniform deformation
- Test at 3 temperatures: 41F, 77F, and 104F (5, 25, and 40C)
- P = 40 to 60lb. (180 to 270kN) with a load duration of 0.1s applied every 3s

Dynamic Modulus E*

- Difference between MR and E*
 - MR: use any waveform with a given rest period
 - E*: use sinusoidal or haversine loading with no rest period
- E* is used to describe the stress-strain relationship of visco-elastic materials

Dynamic Modulus Test

- ASTM (1989b) D3497-79
- Compressive haversine loading
- At temperatures of 41, 77, and 104F (5, 25, and 40C)
- At frequencies of 1, 4, and 16Hz for each temperature
- E* is the ratio between the axial stress and the recoverable axial strain

Fatigue Characteristics

Fatigue testing

- Four-point bending beam (third-point bending)
- Three-point bending beam (center-point bending)
- Cantilever beam
- Indirect tensile (IDT)

Testing Conditions

- Loading modes
 - Controlled stress & controlled strain
- Temperature: 20C
- Haversine wave shape @ 10Hz frequency
- Test results
 - For each cycle, report: stress, strain, flexural stiffness, phase angel, temperature, energy...
- Failure criteria:
 - Controlled stress: complete fracture
 - Controlled strain: 50% initial flexural stiffness reduction

Fatigue Data Analysis

$$N_f = k_1 \varepsilon^{-k_2}$$

$$N_f = k_1 \varepsilon^{-k_2}$$

$$N_f = k_1 E^{-k_3}$$

Permanent Deformation

- Asphalt rutting
- Granular material rutting
- Subgrade rutting

Testing Method

- Repeated load test
 - Similar as resilient modulus test except that loads up to 100,000 repetitions
 - Record the deformation at a number of designated cycles

Rutting Models

Two categories

- 1. Subgrade strain model: Control subgrade rutting by limiting subgrade compressive strain on top of subgrade
- 2. Permanent deformation model: Account for the permanent deformation properties for each layer in determining the total deformation occurs at the pavement surface

1. Subgrade strain model

control subgrade rutting

$$Nf = f_4(\varepsilon_v)^{-f_5}$$

Organization	£4	£,	Allowable Rut Depth, mm (in)
Asphalt Institute	1.365 x 10°	4.477	13 (0.5)
Shell (revised 1985) 50% Reliability 85% Reliability 95% Reliability	6.15 × 10° 1.94 × 10° 1.05 × 10°	4.0 4.0 4.0	13 (0.5)
U.K. Transport and Road Research Laboratory — (85% Reliability)	6.18 x 10°	3.95	10 (0.4)
Belgian Road Research Center	3.05 x 10*	4.35	10 (0.4)

51

(after Huang 1993)

2. Permanent Deformation Model

control permanent deformation in AC layers

$$\log(\varepsilon_p) = a + b(\log N)$$
$$\varepsilon_p = AN^b$$

Where:

 ϵ_p = permanent strain N = number of repeated loas repititions A, a, b = regression coefficient

Resilient Modulus of Unbound Materials and Soils

Resilient Modulus – Unbound Materials & Soils

- Nonlinear, elastic-plastic material
- Stress dependent behavior
 - Stress softening (fine-grained soils)
 - Stress hardening (coarse-grained materials)
- Resilient (= Recoverable) deformation
- Rapidly applied loads
 - Similar to those from wheel loads
- Relates to elastic component of response only

Determining Resilient Modulus

- Lab Test: AASHTO T 294-92 (SHRP)
 - Undisturbed
 - Disturbed, remolded and compacted
 - Input to AASHTO design procedure
- Estimate from various procedures
 - Backcalculation of deflections
 - Soil properties
 - Unconfined compressive strength
 - CBR

Resilient Modulus – Unbound Materials & Soils

- Typical load pulse
 - Haversine loading
 - 0.1 second loading time
 - 0.9 second rest period

57

PCC Materials

- •Modulus of Rupture or Flexural Strength
 - Split Tensile Strength
 - Compressive Strength
 - •Elastic Modulus
 - Interrelationships

Modulus of Rupture

- Indicator of tensile strength
- Profound effect on fatigue cracking potential of PCC slab
- Test method ASTM C78
 - Simple beam
 - Third point loading

Factors Affecting PCC Flexural Strength

- Mix constituents
 - Cement type, cement content, aggregates
- Presence and type of admixtures
- w/c ratio
- Curing conditions

Maturity

- Age
- Test method and equipment

62

Splitting Tensile Strength

- Lower than M_R from modulus of rupture test
- Ratio between two typically ranges from 0.6 to 0.7
- ASTM C496

Compressive Strength

- Universal indicator of PCC quality
- Used in process control, but not as primary input in pavement design
- Function of:
 - Aggregate size, shape, and type
 - Cement composition
 - Water-cement ratio
 - Admixtures
 - Curing

Elastic Modulus

- Static modulus of elasticity
- Static modulus approximately 0.8 of modulus from rapid load applications
- ASTM C469

Factors Affecting PCC Elastic Modulus

- The relative proportions of paste and aggregate
- Ratio of water to cementitious materials (w/(c+p))
- Aggregate characteristics

Relation of Flexural Strength to Compressive Strength for PCC

$$MR = 9.5 f_c^{0.5}$$

MR = Flexural Strength, psi (Modulus of Rupture) f_c = Compressive Strength, psi

Relation of Elastic Modulus to Compressive Strength for PCC

$$E = 0.043 \rho^{1.5} f_c^{0.5}$$

E = Elastic modulus, psi

 f_c = Compressive Strength, psi

 ρ = PCC unit weight, pci

Other Material Properties

Other PCC Properties

- Coefficient of Thermal Expansion
- Coefficient of Drying Shrinkage (ASTM C490)

70

Poisson's Ratio

- Ratio of lateral strain to axial strain
- Generally insensitive to stress and strain in response of asphalt pavement system
- Determined using static test, dynamic test, or wave propagation

Typical Poisson's Ratios

- Bituminous Road Materials
 - $0.15 \le \mu \le 0.50$
- Unbound Base
 - $0.30 \le \mu \le 0.40$
- Subgrade
 - $0.10 \le \mu \le 0.50$
- Portland Cement Concrete (static value)
 - $0.15 \le \mu \le 0.18$

Environment/Climatic Factors

- Precipitation/Moisture
- Temperature
- Wind
- Sunshine
- Freeze-thaw cycles

Environment / Climatic Conditions

- Environmental conditions affect
 - HMA strength and modulus
 - PCC strength and modulus
 - PCC slab curvatures
 - Frost-susceptible soil behavior
 - Pavement construction

Moisture Effects

- Moisture-related damage falls into these categories
 - Weakening of pavement layers
 - Degradation of pavement material (stripping and erosion of AC, erosion of other materials, Dcracking of PCC)
 - Loss of bond between layers

Effect of Temperature on Material Properties

- Freeze-Thaw effects
 - Impact on frost-susceptible soils
 - Material durability
- Temperature effect on asphalt modulus
 - High temperatures lead to lower moduli and vice versa
- Temperature gradients in PCC
 - Significantly affect stresses

Failure Criteria

- Functional Failure
 - Ride Quality / Serviceability
- Structural Failure
 - Fatigue Cracking
 - Rutting

Serviceability-Performance Assumptions

- Highways are for comfort & convenience of users
- Highways may be subjectively rated by users
- Serviceability can be expressed as mean rating by all users
- Physical distress can be related to subjective evaluation
- Performance can be expressed by serviceability history

Flexible Pavement Distresses

- Fatigue Cracking
- Rutting
- Thermal Cracking
- Thermal Fatigue Cracking

Structural Performance - Fatigue

Rigid Pavement Distresses

- Fatigue Cracking
- Pumping or Erosion
- Faulting, Spalling, and Joint Deterioration

Structural Performance-Joint Faulting

Reliability

- Definitions
 - Reliability = 1 P[Failure]
 - "The reliability of a pavement design-performance process is the probability that a pavement section designed using the process will perform satisfactorily over the traffic and environmental conditions for the design period."
 - 1993 AASHTO Guide

Summary of Design Factors

- Traffic
 - Types and variability of loads
- Materials
 - Material categories and related properties
- Environment/Climate
 - Moisture and Temperature
- Types of distress
 - Serviceability
 - Specific modes of distress
- Reliability

