Designs Factors for Flexible and Rigid Pavement Design

Workshop & Lectures on Pavement Engineering, Maintenance and Management

References

- Pavement Analysis and Design, Y.H. Huang, 2004
- Principles of Pavement Design, Yoder and Witczak, 1975
- Manual for Professor Training Course in Asphalt Technology, National Center for Asphalt Technology
- National Highway Institute (NHI) Training Course 131064A, Introduction to Mechanistic Design of New and Rehabilitated Pavements

Design Factors

- Traffic and Loading
- Materials
- Environment
- Failure Criteria
- Reliability

Traffic

- Primary Design Input
- Consideration
 - Traffic Volume
 - Mixed Traffic
 - Variable Vehicle and Axle Weights
 - Predicting Future Traffic
 - Lane Distributions

Traffic Volume

- AADT is the average daily traffic volume in all lanes in both directions
- AADT = (total yearly traffic volume) / 365
- T = percentage of truck

Mixed Traffic

Mixed Traffic - Vehicle Distributions

Mn/DOT 1994 Geotechnical and Pavement Manual, Rural CSAH or County Roads

Mixed Traffic - Variable Axle Weight

Vehicle Classification

Mixed Traffic – Axle Configurations

• Single

Tandem

Tridem

Conversion of Mixed Traffic to Equivalent of Single Axle Loads

Concept of Equivalent Single Axle Loads (ESALs)

- Convert mixed traffic into equivalent 80-kN (18-kip) single axles
- Equivalent axles based on loss in serviceability measured at the AASHO Road Test
- Load equivalent factors used for the conversion

Relative Damage

AASHO Road Test — Empirical Relationship

• 4th Power Law

Equivalent Axle Load Factor

- Defines the damage to pavement by any axle load relative to the damage induced by a single load (18 kip).
- Design is based on number of passes of single axle load.
- Equivalent load factor used depends on pavement conditions.
- Load factors are based on experience but can be derived theoretically.
- AASHO is the most commonly used procedure.

$$ESAL = \sum_{i=1}^{m} F_i n_i$$

m = number of axle group,

i = axle load group,

 F_i = equivalent axle load factor,

n = number of passes.

Flexible Pavement

AASHTO Equivalent Factors:

$$\log\left(\frac{W_{tx}}{W_{t18}}\right) = 4.79\log(19) - 4.79\log(L_x + L_2) + 4.33\log L_2 + \frac{G_t}{\beta_x} - \frac{G_t}{\beta_{18}}$$

$$EALF = \left(\frac{W_{t18}}{W_{ttx}}\right)$$

Theoretical Analysis: there are different criteria proposed by different organizations.

- Asphalt Institute (failure criterion):
- Deacon (1960) (layer theory):

$$N_f = f_1(\varepsilon_t)^{-f_2} (E_1)^{-f_3}$$

$$EALF = \left(\frac{W_{t18}}{W_{trx}}\right) = \left(\frac{\varepsilon_x}{\varepsilon_{18}}\right)^4$$

Theoretical Analysis (cond't):

$$EALF = \left(\frac{L_x}{18}\right)^4 \qquad EALF = \left(\frac{L_x}{L_s}\right)^4$$

criterion based on permanent deformation:

$$W_{tx} = \text{number of } \text{ x-axle load applications at the end of time, t}$$

$$\varepsilon_x = \text{tensile stress at the bottom of asp.layer due to x-axle load,}$$

$$V_d = f_4(\varepsilon_c)^{-f_5}$$

$$\varepsilon_{18} = \text{tensile stress at the bottom of asp.layer due to 18 kip axle load,}$$

$$L_x = \text{the load in kip on one signle axle,}$$

$$L_2 = \text{axle code, 1,2,..}$$

 W_{t18} = number of single loada pplication to time, t

Determining Vehicle Factors

- Average damaging effect of vehicle
- Consider axle weight distribution for particular vehicle type

Example – Truck Equivalency Factor

Axle Load, kips	LEF		Number of Axles		A18 Kip
					EAL's
Singles					
3-5	0.002	X	1	=	0.002
5-7	0.01	X	5	=	0.05
7-9	0.034	X	15	=	0.51
9-11	0.088	X	57	=	5.016
11-13	0.189	X	63	=	11.907
13-15	0.36	X	17	=	6.12
23-25	3.03	X	3	=	9.09
Tandems					
27-29	0.495	X	50	=	24.75
29-31	0.658	X	72	=	47.376
31-33	0.857	X	85	=	72.845
33-35	1.09	X	120	=	130.8
35-37	1.38	X	25	=	34.5
			Total A18s	=	342.966
ESAL Vehicle Factor=	Total A18s	_ =	342.966	_ =	2.078
	# of Trucks		165		<u></u>

ESALs/Vehicle

Predicting Future Traffic

- How fast will traffic grow?
- What is the design level of traffic?
- Examine historical trends
 - Develop best estimate of future growth rate
- Apply growth factor to current volume

Growth Factor =
$$\frac{(1+g)^n - 1}{g}$$

- Assumptions
 - There is steady growth in traffic volumes
 - All other distributions remains relatively constant over the design period

Example of Single Axle Growth

Lane and Directional Distributions

- Typically design for 'heaviest' loaded lane
- Develop best information regarding lane distribution

Lane and Directional Distributions

- Typical Assumptions
 - Directional distribution = 50%
 - Lane Distribution

# Lanes/Direction	%Traffic In Design Lane		
1	100		
2	80-100		
3	60-80		
4	50-75		

Example of Lane Distribution

ADT 20,000

ADT 60,000

75% trucks

53% trucks

25% trucks →

39% trucks

8% trucks

Design for worst case!!

Example of Directional Distribution

Percentage of trucks traffic traveling in one direction

Total Design Life ESAL

 The design life or performance period is the cumulative expected 18-kip ESAL

$$ESAL = \left(\sum_{i=1}^{m} p_{i} F_{i}\right) (ADT)_{0}(T)(A)(G)(D)(L)(365)(Y)$$

 p_i = percentage of total repetitions for the ith group

 $F_i = EALF$ for the ith load group

 $(ADT)_0$ = average daily traffic at the start of the design period

T = percentage of trucks in the ADT

A = average number of axles per truck

G = growth factor

D = directional distribution factor

L = lane distribution factor

Y = design period in years

Load Spectra

- Deal with load variability directly
 - Load configurations
 - Tire pressures
 - Axle spacing
- Use mechanistic analysis to predict state of stress beneath each load
 - Empirically relate stresses to performance

Sources of Traffic Data

- Traffic Data Monitoring Systems
 - Automatic traffic recorders (ATR)
 - Automatic vehicle classification (AVC)
 - Determine configuration of vehicle and divide vehicles into different classes
 - Weigh-in-motion (WIM)
 - Axle weights/counts and vehicle classification

Materials

- Asphalt Materials
- PCC Materials
- Cementitiously Stabilized Materials
- Non-stabilized granular base/subbase
- Subgrade soils
- Bedrock

Asphalt Materials

- ◆Resilient Modulus
- Dynamic Modulus
- ◆ Fatigue Characteristics
- Permanent Deformation

Asphalt Modulus

- Function of
 - Temperature
 - Rate of loading
 - Age
 - Volumetric properties
- Use of time-temperature superposition to determine "master curve"
- As the temperature increases, the modulus decreases
- As loading time increases, the modulus decreases
- As HMA ages with time, the modulus increases

Asphalt Modulus

- Resilient Modulus
 - Compression
 - Indirect Tension
- Dynamic Modulus
 - Measured-Compression
 - Calculated from regression equation

Resilient Modulus

Figure 7.1 Strains under repeated loads.

Compression Test for Mr

Test Condition

- Sample size: 4in. (102mm) in diameter and 8in. (203mm) in height
- Sample conditioning 50-200 cycles to ensure uniform deformation
- Test at 3 temperatures: 41F, 77F, and 104F (5, 25, and 40C)
- 20psi (138kPa) haversine loading with a duration of 0.1s and a rest of 0.9s

IDT Test for Mr

$$M_r = \frac{P(\nu + 0.2734)}{\delta t}$$

Test Condition

- ASTM(1989b) D4123-82
- Sample size: 4in. (102mm) in diameter and 2.5in. (64mm) thick
- Sample conditioning 50-200 cycles to ensure uniform deformation
- Test at 3 temperatures: 41F, 77F, and 104F (5, 25, and 40C)
- P = 40 to 60lb. (180 to 270kN) with a load duration of 0.1s applied every 3s

Dynamic Modulus E*

- Difference between MR and E*
 - MR: use any waveform with a given rest period
 - E*: use sinusoidal or haversine loading with no rest period
- E* is used to describe the stress-strain relationship of viscoelastic materials

Dynamic Modulus Test

- ASTM (1989b) D3497-79
- Compressive haversine loading
- At temperatures of 41, 77, and 104F (5, 25, and 40C)
- At frequencies of 1, 4, and 16Hz for each temperature
- E* is the ratio between the axial stress and the recoverable axial strain

Dynamic Modulus

Dynamic Modulus Master Curve

Dynamic Modulus Master Curve

Dynamic Modulus Equation

- Function of:
 - Asphalt binder viscosity
 - Loading frequency
 - Air void content
 - Effective asphalt content

- Cumulative percent retained on
 - 19-mm
 - 9.5-mm
 - 4.76-mm
- Percent passing0.075-mm sieve

Fatigue Characteristics

Fatigue testing

- Four-point bending beam (third-point bending)
- Three-point bending beam (center-point bending)
- Cantilever beam
- Indirect tensile (IDT)

Four-Point Bending Beam Fatigue Test (AASHTO T-321)

Testing Conditions

- Loading modes
 - Controlled stress & controlled strain
- Temperature: 20C
- Haversine wave shape @ 10Hz frequency
- Test results
 - For each cycle, report: stress, strain, flexural stiffness, phase angel, temperature, energy...
- Failure criteria:
 - Controlled stress: complete fracture
 - Controlled strain: 50% initial flexural stiffness reduction

Fatigue Data Analysis

$$N_f = k_1 \varepsilon^{-k_2}$$

$$N_f = k_1 E^{-k_3}$$

Permanent Deformation

- Asphalt rutting
- Granular material rutting
- Subgrade rutting

Testing Method

- Repeated load test
 - Similar as resilient modulus test except that loads up to 100,000 repetitions
 - Record the deformation at a number of designated cycles

Rutting Models

Two categories

- 1. Subgrade strain model: Control subgrade rutting by limiting subgrade compressive strain on top of subgrade
- 2. Permanent deformation model: Account for the permanent deformation properties for each layer in determining the total deformation occurs at the pavement surface

1. Subgrade strain model

control subgrade rutting

$$Nf = f_4(\varepsilon_v)^{-f_5}$$

Organization	f ₄	f _s	Allowable Rut Depth, mm (in)
Asphalt Institute	1.365 x 10°	4.477	13 (0.5)
Shell (revised 1985) 50% Reliability 85% Reliability 95% Reliability	6.15 × 10 ⁻⁷ 1.94 × 10 ⁻⁷ 1.05 × 10 ⁻⁷	4.0 4.0 4.0	13 (0.5)
U.K. Transport and Road Research Laboratory — (85% Reliability)	6.18 × 10 ⁻⁸	3.95	10 (0.4)
Belgian Road Research Center	3.05 x 10°	4.35	10 (0.4)

(after Huang 1993)

2. Permanent Deformation Model

control permanent deformation in AC layers

$$\log(\varepsilon_p) = a + b(\log N)$$
$$\varepsilon_p = AN^b$$

Where:

 $\varepsilon_{p}^{}$ = permanent strain

N = number of repeated loas repititions

A, a, b = regression coefficient