Design of Geosynthetics for Slope Stability

Prof. Jie Han, Ph.D., PE The University of Kansas

Outline of Presentation

- Introduction
- Advantages and Concerns
- Face Options
- Slope Stability Design
- Case Study of Reinforced Slopes

Steepen Slope to Wall

Increase Space

Slope vs. Wall

- Slope: Face inclination ≤ 70°
- Solution driven by many factors

Components of Slopes

Advantages and Concerns

Advantages of Reinforced Slopes

- Space optimization vs. cost
- Optional facings based on:
 - appearance
 - inclination
 - site conditions
 - cost
- Ecology-friendly vegetation

Advantages of Reinforced Slopes

- Ease and speed of construction
- No special labor or equipment is required
- Non-select fills can be used
- High tolerance to differential settlement

Cost Comparisons

Main Concerns

- Slope stability, especially surficial stability
- Vegetation selection and establishment
- Erosion
- Maintenance/mowing

Private Residence - Pittsburgh, PA

Typical Surfical Failure

Surficial Failure

- Shallow failure surface up to 1.2m (4ft)
- Failure mechanisms
 - Poor compaction
 - Low overburden stress
 - Loss of cohesion
 - Saturation
 - Seepage force

Erosion Problem

- Loss of soil mass
- Failure mechanism
 - Loss of vegetation cover
 - Soil washed out by water

Slope Failure

Typical Cross Section Geosynthetic-Reinforced Slope

Facing Options

Gabion Facing

Courtesy of Leshchinsky

Geogrid-Wrapped Stone Face

- Stone facial fill
- Soil behind facial fill for economy
- Tensar[®] geogrids protected from UV degradation

AEP Cardinal Plant Slope Repair - Brilliant, OH

Wrapped Around (Germany)

Courtesy of Leshchinsky

Facia: Wire Baskets

Courtesy of Leshchinsky

Facia: Wire Baskets

Courtesy of Leshchinsky

Courtesy of Leshchinsky

Geogrid-Wrapped Soil Face

- 35°-70° inclination
- Stair-stepped shape with vegetation
- Welded-wire baskets

R & B Chambers MSW Landfill Banks County, GA

Geogrid-Wrapped Soil Face

Geogrid-Wrapped Soil Face

Geotextile-Wrapped Around & Shotcrete

Courtesy of Leshchinsky

Shotcrete to Protect the Exposed Geosynthetic and the Picky Supervisor...

Courtesy of Leshchinsky

Segmental Block Slope Face

Wood Facing Option

Windy Hill Station - Atlanta, GA

Treated Wood

- Stepped
- Landscaped or natural vegetation for low maintenance
- Slope stability with geogrids

Geocell Facing Option

Other Hard Facing Options

Other Hard Facings

- Concrete articulating revetments
- Gabions/mattresses
- Riprap
- Shotcrete

SR 430 Seabreeze Bridge - Daytona, FL

Erosion Control

- Erosion Mat or Blanket:
- Enhance seed germination and erosion resistance
- UV protected

Village at Westlake - Austin, TX

Slope Stability Design

Select Fill for Reinforced Slope (AASHTO)

Sieve Size	Percent Passing
3/4 in (20mm)	100-75
No. 4 (4.76 mm)	100-20
No. 40 (0.425 mm)	0-60
No. 200 (0.075 mm)	0-50

- Plasticity Index (PI) should not exceed 20
- To insure survivability, maximum grain size should be limited to 19 mm (experience)
- Free of organic and other deleterious materials

Stability of Slope with Circular Surface – Bishop's Simplified Method

Stability of Slope with Circular Surface – Bishop's Simplified Method

Mobilized shear (strength) resistance

$$T_r = N_r \left(\frac{\tan \phi}{FS} \right) + \frac{c\Delta l_i}{FS}$$

Vertical side force difference

$$\Delta T = T_i - T_{i+1}$$

Force equilibrium in the vertical direction

$$W_{i} + \Delta T = N_{r} \cos \alpha_{i} + \left[\frac{N_{r} \tan \phi}{FS} + \frac{c\Delta l_{i}}{FS} \right] \sin \alpha_{i}$$

$$N_{r} = \frac{W_{i} + \Delta T - \frac{c\Delta l_{i}}{FS} \sin \alpha_{i}}{\cos \alpha_{i} + \frac{\tan \phi \sin \alpha_{i}}{FS}}$$

Moment equilibrium about O

$$\sum_{i=1}^{n} W_i R \sin \alpha_i = \sum_{i=1}^{n} T_r R$$

$$FS = \frac{\sum_{i=1}^{n} \left[(cb_i + W_i \tan \phi + \Delta T \tan \phi) \frac{1}{m_{\alpha i}} \right]}{\sum_{i=1}^{n} W_i \sin \alpha_i}$$

Search for Minimum Factor of Safety

Search centers

Minimum FS

Search for Minimum Factor of Safety

FS Safety Map

Courtesy of Leshchinsky

Slope Stability Design

Slope Stability Design

Modified Bishop Method

Limit State Basic Concept

- Active wedge is formed
- Tensioned reinforcement is anchored in stable soil
- If reinforcement is too weak, it will rupture
- If anchorage length is too short, it will be pulled out

Allowable Tensile Force, T_{ai}

The lesser of allowable tensile strength and pullout capacity

Long-Term Design Strength

$$T_a = LTDS = \frac{T_{ultimate}}{RF_{Creep}RF_{Durability}RF_{InstallationDamage}}$$

Per AASHTO Bridge 1998 specifications

Geosynthetic Pullout Capacity

Pullout Test

Geosynthetic Pullout Capacity

$$T_{po} = 2F^* \cdot \alpha \cdot \sigma'_{v} \cdot L_{e} \cdot R_{c}$$
$$F^* = F_{q} \cdot \alpha_{\beta} + \tan \delta$$

- F* = the pullout resistance (or friction-bearing -interaction) factor
- α = a scale effect correction factor to account for a nonlinear stress reduction over the embedded length (0.6 to 1.0 for geosynthetics)

Commonly assume
$$F^* = \tan \delta = C_i \tan \phi$$

 $T_{po} = 2\sigma'_v \cdot L_e \cdot \alpha \cdot C_i \cdot \tan \phi \cdot R_c$

Allowable
$$T_{po(a)} = 2\sigma_v \cdot L_e \cdot \alpha \cdot C_i \cdot \tan \phi \cdot R_c / FS_{po}$$

Percent Coverage

Percent coverage, $R_c = A_g/A \times 100\%$

Static Factor of Safety – Simplified Method (FHWA)

Seismic Factor of Safety

$$FS_r = \frac{M_R + \sum T_{ai} y_i}{M_D + \sum m_i (k_{hi} g) y_k} \ge 1.1$$
 (k_{hi}=A/2)

Modified Bishop's Analysis – Rigorous Method

Leshchinsky

Translational Failure

- Sliding can occur along reinforcement layer or along foundation interface
- Conduct translational stability analysis (including deep-seated) to calculate the required L and T

 Translational stability analysis: Can utilize 2-Part and 3-Part Wedge – Spencer Analysis

2-Part Wedge Using Spencer's

From ReSSA Program

Spencer's Method

From ReSSA Program

FS using Numerical Method

Shear Strength Reduction Technique

$$C^{trial} = C / FS^{trial}$$

$$\phi$$
 trial = tan⁻¹ (tan ϕ / FS trial)

Minimal Factor of Safety and Critical Surface from FLAC (4.0)

Plasticity Zone from FLAC (4.0)

Required Factors of Safety

Limit equilibrium

$$FS = 1.0$$

Required FS under static loads

Required FS under seismic loads

Surficial Slope Stability

$$FS = \frac{c'H + (\gamma_{sat} - \gamma_w)Hz\cos^2\beta\tan\phi' + T_g(\cos\beta\sin\beta + \sin^2\beta\tan\phi')}{\gamma_{sat}Hz\cos\beta\sin\beta}$$

 T_g = summation of geosynthetic resisting force (controlled by pullout or rupture)

Case Study of Reinforced Slopes

Case History - Recreational Water Park

Orlando, FL

Design Requirements

- Create artificial "mountain" 21m (70 ft) high
- Highly irregular surface shape
- Slopes from 3H:1V to 0.35H:1V
- Compressible foundation soils

Case Study - Recreational Water Park

Orlando, FL

Alternative

 Customized concrete facing

Solutions

- Wire formed geogridwrapped face
- Vegetated erosion blanket
- Artificial "rock" concrete

Case Study - Recreational Water Park

Special Details

- 0.5H:1V slopes used to preconsolidate foundation for tunnel
- Drainage composite included to expedite consolidation

Case Study - Recreational Water Park

Construction

- Fast track construction
- Achieved finished height in approximately 100 days

Orlando, FL