Design of Geosynthetics for Earth Walls under Special Conditions

Prof. Jie Han, Ph.D., PE The University of Kansas

Outline of Presentation

- Introduction
- Tiered Walls
- Limited-Space Earth Walls
- Piles in Earth Walls Subjected to Lateral Loads

Introduction

Earth Walls under Special Conditions

Tiered Walls

Geosynthetic-Reinforced Retaining Structures

Wall

Tiered

Slope

Multi-tired Block Walls

Courtesy of Leshchinsky

Question?

Tiered walls should be designed as

- Walls Lateral earth pressure theory
- Slopes Limit equilibrium theory

Minimal Factor of Safety and Critical Surface from ReSSA (2.0)

Minimal Factor of Safety and Critical Surface from FLAC (4.0)

Critical Slip Surface and FS

Summary of Parametric Study

Case Studied	Parameter Value	Tensile Strength (kN/m)	Fs (Numerical)	Fs (Limit equilibrium using Bishop)
Baseline	$N_t = 3$, $H = 9m$, $d_{os} = 1.2m$, $N_r = 1$, $L = 6.3m$, $J = 1000kN/m$, $\gamma = 18 kN/m^3$ $c_r = 0kPa$, $\phi_r = 34^\circ$, $c_f = 10kPa$, $\phi_f = 34^\circ$, $q = 0kPa$, $h_w = N/A$	10.0	0.99	
Fill quality	c _r =0kPa, φ _r = 25º	22.0	0.99	
Reinforcement length	L = 4.2m	11.4	0.98	
Reinforcement stiffness	J=100,000 kN/m	10.0	1.03	
Reinforcement type	N _r = 2	7.5 (upper 8 layers) 11.0 (lower 7 layers)	1.01	1.00
Foundation soil	c _f =0kPa, φ _f = 18°	10.0).86 (bearing ailure)	
Water	h _w = 3m	9.25	1.01	
Surcharge	q = 20 kPa	11.6	1.02	
No. of tiers	N _t = 5, d _{os} = 0.6m	10.1	1.00	

Effect of Offset Distance

Effect of Fill Quality

Effect of Reinforcement Length

Problem - ReSSA Demo

Courtesy of Leshchinsky

Safety Map: Unreinforced Problem Using Bishop

Safety Map: Reinforced Problem Using Bishop

Safety Map: 2-Part Wedge Using Spencer

Safety Map: 3-Part Wedge Using Spencer

Safety Map: 2-Part Wedge Using Spencer – Foundation Replaced

Case Study

Four Tiered Walls with Toe Slope

Exterior Wall Cracks

Crackmeter

Interior Wall Crack

Interior Floor Cracks

Remediation using Micropiles

Section for Analysis

Engineering Properties of Soils and Rock

Soil	γ (kN/m ³)	φ (deg.)	c (kPa)
Lightweight (slag) fill	12.6	45.0	0
New fill	21.2	25.8	9
Old (1992) fill	21.2	23.9	9
Residual soil	20.4	33.0	14.4
Bedrock	21.2	45.0	96

Long-Term Design Strength of Geogrids

Geogrid Type	T _{Itds} (kN/m)	
Type 1	37.9	
Type 2	17.7	
Type 3	55.6	

Limit Equilibrium Analysis – Bishop's

Searched Slip Surfaces

Bishop Analysis: Safety Map

Limit Equilibrium Analysis – Spencer

Spencer Analysis: Safety Map

Toe Berm

Anchors along Toe of Wall

Elastic Moduli and Poisson's Ratios

Soil	E (MPa)	V
Lightweight (slag) fill	51.7	0.25
New fill	10.3	0.30
Old (1992) fill	10.3	0.30
Residual soil	20.7	0.30
Bedrock	480	0.20
Facing block	480	0.25
Concrete footing	480	0.25

Tensile Stiffness of Geogrids

Geogrid Type	J (kN/m)
Type 1	319
Type 2	539
Type 3	619

Vertical Displacement Contours

Horizontal Displacement Contours

Plasticity Zones

Critical Slip Surface and FS

Toe Berm and Anchor Remedy

Results of Analyses

 Limit equilibrium and numerical analyses yield nearly identical Factor of Safety (FoS)

- FoS = 1.20 (with cohesion)FoS = 1.05 (without cohesion)
- The deformation profiles predicted by FLAC are in good agreement to those from the measured

Recommendations

 Cohesion should not be considered for a long-term stability

 FoS ≥ 1.3 is enough for slope stability but may not be enough to support sensitive structures

 FoS ≥ 1.5 should be designed if structures are supported

Limited-Space Earth Walls

Definitions

Numerical Model

Factor of Safety and Tension

Critical Slip Surface and FS

Lateral Earth Pressure Coefficient

Lateral earth pressure in limited space

$$P_a' = K_a' \times \frac{1}{2} \gamma H^2 = T$$

Lateral earth pressure coefficient in limited space

$$K'_a = \frac{2T}{\gamma H^2}$$

LE/Numerical vs. Centrifugal Test Results (φ=36° and m=∞)

Ratio of Lateral Earth Pressure Coefficient

Piles in Earth Walls Subjected to Lateral Loads

Typical True MSE Wall Abutment

Typical Mixed MSE Wall Abutment

Sound Barrier Walls

Current Practice

Plan View

Distance to back of wall facing

 \longrightarrow \setminus

Diameter of test shaft = 0.9m

Shaft A 0.9m

Shaft B 1.8m

Shaft C 2.7m

Shaft D 3.6m

Profile of Wall and Subsurface

Steel Reinforcement Used in Shafts

2 x 1.2m Dia x 8.8m long Reaction Shafts 1.2m Shaft

0.9m Shaft

4 x 0.9m Dia x 8.8m long Reaction Shafts

All Longitudinal Bars # 11

All Transverse Bars # 5

7 x 0.9m Dia x 7.0m long Test Shafts

1 x 0.9m Dia x 5.5m long Test Shaft

Corrugated Metal Pipe

- Placement, Leveling, Compaction
- Geogrid
 - Placement, Trimming (if necessary), Connectors, Pre-tensioning
- Notes
- Top Soil Cover
- Slip Joints

Blocks

Placement

Leveling

Instrumentation

- Inclinometer Casing
- Strain Gages on Geogrid
- Photo Targets Attached to Facing
- Earth Pressure Cells Behind Facing
- Data Collection System
- Tell-Tales Imbedded in Wall

Inclinometer Casing

Single Shaft

Group Shaft Test

Load versus Deflection of Shaft

Load versus Deflection of Group Shaft

Effect of Shaft Distance on Capacity

Definition of Wall Facing Deflections

Facing Deflection – Vertical Profile

Facing Deflection – Horizontal Profile

Distance From Centerline (m)

Facing Deflection – Horizontal Profile

Shaft C at El. 5.6m

Facing Deflection – Horizontal Profile

Group Shafts at El. 5.4m

Shaft Spacing for No Group Effect

Shaft B Pressure Cell Measurements

Strength Limit State Recommendations

	Distance (m)					
Test	Center of shaft	Measured		ateral Load N)	Required Shaft	
Shaft	to Back of	Load	Factor of	of Safety	Spacing (m)	
ID	Wall Facing	(kN)	2	3	To avoid Influence	
A	0.9	151	76	50	3.0	
В	1.8	401	201	134	5.2	
BS	1.8 (4.5m length)	245	123	82	5.2	
BG	1.8 (4.5m spacing)	378	189	126	-	
С	2.7	516	258	172	6.0	
D	3.6	863	432	288	7.9	

Service Limit State Recommendations

Shaft	Lateral Load (kN)							
Displacement (mm)		13	19	25	51	102	Ultimate	
Α	0.9	-	62	67	102	142	151	
BS	1.8 (4.5m length)	120	134	147	178	218	245	
BG	1.8 (4.5m spacing)	120	156	174	236	312	378	
В	1.8	178	209	223	276	343	401	
С	2.7	174	196	223	294	387	516	
D	3.7	-	-	245	360	534	863	