Deformation & failure of DM group columns

Masaki KITAZUME
Port and Airport Research Institute

Deep Mixing Method

a deep in-situ soil admixture stabilization technique using cement or lime

column diameter: 1 to 1.5m

column strength: 200 to 2,000 kPa

Failure Pattern

Failure pattern?

DM improved ground

assumed failure modes in design

shear failure mode

Current design - External and internal stability -

sliding failure

shear failure

$$Fs = \frac{P_{pc} + F_{rf} + F_{rc}}{P_{ae} + P_{ac}}$$

$$Fs = \frac{\{a_s \cdot q_u/2 + (1 - a_s) \cdot c_u\} \cdot R}{W \cdot x}$$

External Stability

centrifuge model test

Test case and $P_{ef}(kPa)$

		3 rows	5 rows	7 rows
unimp.	10.8	-	-	-
acryl (infinite)	-	26.5	42.2	50.0
high (1300 kPa)	-	33.3	34.2	47.9
low (400 kPa)	<u>-</u> -	16.9	26.2	25.4

Model treated column for external stability

strain gauge

diameter:

inner 1.6 cm

outer 1.9 cm

length: 20 cm

EI: 9.3 Nm²

unit weight: 1.43 g/cm³

Failure mode - Unimproved ground -

Embankment pressure – disp.

Failure mode

Failure mode - External stability -

Embankment pressure – disp.

Failure mode

Failure mode in external stability

- external stability
 - sliding failure mode
 - **collapse failure mode**

sliding failure mode

Stable

collapse failure mode

Less stable

collapse — sliding failure mode found in daily life

collapse failure

Domino Taoshi

sliding failure

Dharma Otoshi

Internal Stability

shear failure

Model treated column for internal stability

Test series	mixing condition		size		strength		carbon rod
	w _i (%)	a _s (%)	diameter	length	q _u (kPa)	σ_b (kPa)	diameter
Th	160	10.0	2cm	20 cm	1300	320	3mm
Tl	160	12.5	2cm	20 cm	400	120	2mm

Model treated column

Internal stability

Embankment pressure – displacement

column failure mode - low strength column -

column failure modehigh strength column -

What we found about internal stability

- internal stability
 - shear failure mode
 - bending failure mode

shear failure mode

Stable

bending failure mode

Less stable

What we found

- Failure modes assumed in the current design, sliding and slip circle failure, are not observed in the tests.
- Collapse failure and bending failure modes are observed.
- The current design may overestimates the stability.

Evaluation- **External stability** -

sliding failure

$$Fs = \frac{P_{pc} + F_{rf} + F_{rc}}{P_{ae} + P_{ac}}$$

collapse failure

$$Fs = \frac{M_{sc} + M_{rc} + M_{rt} + M_{re} + M_{pc}}{M_{ae} + M_{ac}}$$

Evaluation- **External stability** -

The calculation incorporating collapse failure gives reasonable estimation of the model tests.

Evaluation- Internal stability -

shear failure

$$Fs = \frac{P_{pc} + F_{rf} + F_{rc}}{P_{ae} + P_{ac}}$$

bending failure

$$Fs = \frac{M_{sc} + M_{rc} + M_{rt} + M_{re} + M_{pc} + M_{pb}}{M_{ae} + M_{ac}}$$

Evaluation

- shear failure mode -

The calculation based on shear failure mode overestimates the depth of failure plane and failure pressure.

Evaluation

- bending failure mode -

The calculation based on bending failure mode gives reasonable estimation of the depth of failure plane and failure pressure.

Combined failure criteria

improved ground should fail by one of the failure modes that gives a minimum capacity.

Concluding remarks

for external stability

- The collapse failure mode instead of the sliding failure mode is observed in the model tests.
- The calculation based on the collapse failure mode can gives reasonable evaluation for the external stability.

for internal stability

- The DM columns do not fail simultaneously but one by one with bending failure mode.
- The calculation based on the bending failure mode of column can gives reasonable evaluation for the internal stability.

Thank you for your attention

- Physical Experiment is the best teacher
- Physical Experience is also the best teacher

