Chapter 6

Dynamic Response Analysis

Masjid ye Imam, Isfahan, Iran.
Isfahan was a capital of the Safavid Dynasty of Iran since sixteenth Century. At the peak of its prosperity,
this city was considered to be half of the world. The center of Isfahan was decorated by a beautiful
garden and many marvellous buildings by monarchs of the dynasty mostly in the seventeenth Century.
This city ended its time in 1722 upon invasion from north east.



¢ 6.1 Rate-Independent Behaviour of Clay

Clay has a creep behavior; its deformation develops slowly with time under constant magnitude of
stress. Therefore, the stress—strain curve of clay varies with the rate of loading. When loaded faster, clay
reveals greater modulus and higher strength. These observation suggests that clay 1s a viscous material.

On the other hand, the stress—strain—strength characteristics of clay is controlled by a grain-to-grain
friction and chemical bonding as well as ¢electric interaction. The magnitude of these forces are not much
dependent of the rate of loading. Consequently, the stress—strain behavior of clay is partially rate-dependent
but partially rate-independent.
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Fig. 6.1 Stress—strain and pore-water pressure behavior of normally consolidated Grande-Baleinee
Clay (Lefebvre and LeBoeuf, 1987)
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ratio of silt (Hardin and Drnevich, 1972) ratio in soil dynamics

Figure 6.1 demonstrates undrained triaxial compression of clay with the axial strain rate varying between
1.0 %/hour and 132 %/hour. Evidently, the faster loading is associated with the greater strength and the
less development of excess pore water pressure (the greater effective stress). In spite of the 132 times
faster rate of loading, the maximum shear stress (strength) increased by about 25% only. The modulus
increased by more or less the same amount as well. Thus, clay behavior is rate dependent to a limited
extent.

Figure 6.2 illustrates a classic report on the damping ratio of Lick Creek Silt (liquid limit LL =22-34%,
plasticity limit PL= 20-27%). Damping ratio stands for the amount of energy loss in cycle due to a
hysteretic nature of the loop (Fig. 6.3). A viscous material has a proportionality between damping ratio
and the rate of loading (frequency in Hz unit). Damping ratio has been known to increase as the
amplitude of strain becomes larger. In Fig. 6.2, however, the relationship between damping ratio and the
strain amplitude is independent of different frequencies of 25-38 and 1/12 Hz.



7 6.2 Significance of Complex Analysis

It may sound strange that many, although not all, dynamic analyses of ground make use of complex
numbers: real and imaginary parts. Structural dynamics hardly do this. This practice has a reason in the
simplicity in analysis and a use of complex-modulus modeling.

A discussion is initiated with a conventional single-degree-of-freedom model with mass, spring, and
dashpot, which is called a Voigt model (Fig. 6.4a). The Voigt model can sustain a static force, while the
other one in Fig. 6.4b (Maxwell model) cannot. Thus, the former model seems more similar to the real

soil behavior. K
i
When a Voigt model is excited by a harmonic force of F cosar, Feoswi
the equation of motion is given by
p: > u
d’u du (a) Voigt model
m—s-+c—+ku=F coswrt. (6.1) g
dr” dr - F
cosmt
Since the force is harmonic, the solution is assumed to be harmonic
u
as well (b) Maxwell model
Fig. 6.4 Single-d -of freed
u=Asinwt + B cosax, (6.2) '8 ing e-cegrec-of freedon
models with real numbers
where 4 and B are unknown parameters. By substituting Voigt model under forced oscillation
(6.2) in (6.1) and equating the coefficients of sin and FOl.fig
cos terms, 1
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Fig. 6.5 Rate effects in force-displacement

What follows employs a complex expression of force relationship of Voigt model subjected to forced

oscillation
d’u du : .
m—+c—+ku =F exp(iox). (6.4) k(1+ 2ih)
dr’  dr v Fexp(ior)
MW@
Equations (6.1) and (6.4) are equivalent when real parts of
forces are compared. By assuming u = U exp(ier) in (6.4), u

Fig. 6.6 Model of complex modulus
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By taking the real part of the solution U exp(iax),

Re(u) = F{(k — ”1(01) cosarree sina)r} = A sinwr + B coswt, (6.5)
(k —ma’ )2 +(cw) ’




which is identical with (6.3). Thus, analyses with real and complex numbers are equivalent when real
parts of complex numbers are used. However, the derivation of (6.5) is simpler.

The force—displacement relationship of a Voigt model thus derived is illustrated in Fig. 6.5. It is evident
that the size of the loop, which stands for the energy loss per cycle, increases as the loading frequency is
made higher. Note that real soil does not exhibit such rate dependency (Fig. 6.2 and Sect. 10.9).

The frequency independency of damping ratio (Sect. 6.1) can also be achieved by changing the dashpot
parameter with the loading frequency (inverse proportionality: o 1/ frequency). This idea, however, is
not acceptable from a mathematical viewpoint. When the input consists of harmonic motion of different

frequencies, the equation of motion is given by

Comlex-modulus mod?i:l under forced oscillation
d’u + du +k Z( sinat + b, cos m.f) w/w0—0° Fo2fie
~+c—+ku= a. si . .
dr” dt =\ !

J

n

(6.6)

It is then expected to derive the solution by
superimposing individual solutions for respective
frequency components

Force, F

u(t) = Z(A; sinor + B, cos(w). (6.7)
i Displacement, y
Fig. 6.7 Effects of 4 parameter on force-

The practice of superposition is justified only when displacement loop of complex-modulus model

the given differential equation is linear. When the ¢
value varies with @, however, the equation is not Comlex-modulus model under forced oscillation
lincar any more and, from the mathematical FO3.fig
viewpoints, the superposition as (6.7) is not reasonable
anymore. In other words, the earthquake response is
irregular and its frequency varies with time in a random
manner. Hence, it is difficult to determine any single
number of ¢ parameter. An alternative method of
analysis is either a complex-modulus model (Sect.
9.1) or the use of nonlinear stress—strain model (e.g.,
hyperbolic stress—strain model in Sect. 11.1 or
clastoplasticity in Sect. 11.3).
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0
Displacement, u
Fig. 6.8 Loading rate effects on force—disp-
lacement loop of complex-modulus model

The Voigt model is often replaced in earthquake
geotechnical engineering by a complex-modulus
model in which a spring parameter has an imaginary part (Fig. 6.6). As will be discussed later in Sect.
9.2, this imaginary part stands for an energy dissipation, eliminating the use of a rate-dependent dashpot
in the model (Fig. 6.5). The equation of motion is

9

d;‘ +k(142ih)u = F exp(ion).  (6.8)

m

By assuming u = U exp(iox) again,

_Fylk —ma”) - 2ikh
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and Re(u) =

(6.9)



The energy dissipation in a complex-modulus model is governed by the “A” parameter. Figure 6.7
demonstrates that the greater 4 value makes the loop bigger and increases the energy loss per cycle. In
addition to this, Figure 6.8 reveals the effects of loading frequency. While the amplitude of displacement
varies with the frequency, the damping ratio (Fig. 6.3) is not affected. This feature matches the nature of
soil.



& 6.3 Transient Response

Transient response is a response starting from a state of stationary condi-
tion: displacement= velocity= (. The amplification during transient mo-
tion is different from what was obtained for a steady-state response in
Sect. 6.2. A simple analysis is made in this section of a transient response
of a rate-dependent single-degree-of-freedom model in Fig. 6.9. The
equation of motion in terms of the relative displacement “u” is given by

d’u du 5 )
F + 2h(£)0 d_l + wn”u = —exp(la)f.)

(6.10)
Note that the base acceleration of sinar is replaced by expliwr) for
simplicity of calculation. Hence, the imaginary part of a complex solution
to be derived will be adopted. By using the initial condition of u=du/d=0

m sin r

4—' u, = >
W

Fig. 6.9 Transient response
of a simple model to
harmonic shaking

at time = 0, a complex solution is given by
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frequency, and 4 the critical damping ratio.

Amplification
Figure 6.10 indicates the time history of 10 [ Desien practice in electric
response acceleration for a resonant input (0 8 | owgferll?n dustrics
= @,), varying with the critical damping ratio. r_j_czc . ] P o
For a unit amplitude of input acceleration, the s L 2oycles ‘2 H
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response acceleration does not immediately
reach the steady-state amplitude of 1/(24); it
takes a longer time for smaller critical damping
ratio.

The electric power industries (Z#ET%ZF5¢)
% Rk OmE R K FE#t) have been employ-
ing such a resonant motion (only 2 or 3 cycles)
for seismic design of transformers (Z/+£:43),
switches (FPAZL), etc. in place of real earth-
quake acceleration time histories. Figure 6.11
shows that the amplification of acceleration
derived from 2 cycles (&4 1E5% 2 #) or 3 cycles
(A&HR1ETX 3 #%) of harmonic resonant motion is
comparative to those calculated for an irregular
carthquake motion.
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Fig. 6.10 Transient acceleration response

to resonant input shaking
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Fig. 6.11 Acceleration amplification for harmonic and
irregular input motions (critical damping ratio = 0.05)
(Japan Electric Association, 1998).



& 6.4 Analyses in Frequency Domain and Time Domain

Among two kinds of techniques of dynamic response analyses, the conventional analyses in soil dynamics
have been conducted in the frequency domain (Sect. 4.4). The major features and shortcomings of the
frequency-domain analyses are summarized below.

— The equation of motion,
2

m% + k(] + 2ih)u =f cxp(ia)r)
in Sect. 9.4 is solved by assuming a harmonic response of u = U exp(iwr). Load amplitude, f, and
material properties do not change with time (steady state re-
sponse).

— Calculation of time history of shaking as well as the maximum
acceleration and velocity is widely conducted by frequency-
domain analyses. 2nd mode

— Response to irregular loading is calculated by summing up + 0 \\// \\// \\// \\// D
harmonic (sinusoidal) responses under different frequencies

(theory of Fourier series expansion in Sect. 9.11), see Fig. : Time
6.12. 3rd mode

| 1st mode Freq.domain.fig
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— Since laboratory tests on behavior of soils under cyclic loading + 0 F /AN NAF NS NA
have been conducted by applying harmonic stress cycles to
soil specimens, test results on nonlinear soil properties such
as G/G,, and damping ratio versus strain amplitude, can be
directly used in the response analyses.

— Since the steady-state response analysis cannot take into
account the variation of properties with time, degradation
(softening) of clay and liquefaction of sand after excess pore
water development are out of scope.

— Since the response is assumed to be harmonic, it comes back

Time
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Time
Fig. 6.12 Irrcgular responsc as
summation of component
harmonic modes
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to the initial condition. Hence, residual deformation that remains o J p’_\ ;N .
after earthquake loading cannot be predicted. Vk""" N J
Progress of
On the other hand, time-domain analyses directly integrates the analysis with time
equation of motion of Irregular input .
2 0 PNt S
d u du . NS D
m—-+r|u,— =,/(I)
dr” dr :
Time

in which r(u, du/df) stands for the nonlinearly developed stress in
soil, see Fig. 6.13. One of the famous techniques for direct
integration is Newmark S method, see Sect. 6.6. Features of the
time-domain analyses are described below.

Fig. 6.13 Principle of time-domain
analysis

— The nonlinearity of soil, r(u,du/ dr), 1s often modeled by elasto-plastic models. Being theoretically

beautiful, those models require detailed laboratory tests on undisturbed soil samples.

— Previous test results on G/G,,, and damping ratio are not enough to determine parameters in
elasto—plastic models.

— Irregularity of input motion does not make any computational problem.

— It is possible to take into account the change of soil properties with time.

— Residual deformation can be automatically calculated, although its accuracy is not clear.

— Development of excess pore water pressure and consequent liquefaction can be handled only by the
time-domain analysis (Sect. 22.3).

— Hence, demands for time-domain analyses are increasing today.



It is concluded, therefore, that the choice of the type of analyses depends upon what kind of calculation
is being planned; e.g., time domain analysis suits studies on the development of excess pore water
pressure, consequent softening of soil, and residual deformation. The frequency domain analysis is good
at the assessment of maximum acceleration for example.



7 6.5 Numerical Integration of Equation of Motion in The Time Domain

Integration of equation of motion in the time domain is advantageous over the one in the frequency
domain in that it can easily take into account the nonlinearity of material properties as well as the
irregular time history of external load (transient analysis). On the other hand, being numerical, it cannot
exhibit clearly the general scope of a concerned dynamic phenomenon, namely, the parameter effects.
Moreover, nonlinearity of soil properties have been experimentally studied so far by using constant
amplitudes of stress or strain. This situation directly fits an analysis on harmonic shaking. Therefore,
most dynamic analysis of ground to date uses the idea of harmonic shaking. The irregularity of shaking
is considered by using the theory of Fourier series (equivalent linear method in Sect. 9.10). It will be
possible in future that a simple and useful plasticity theory is developed and becomes widely available.

This page illustrates a simple example of direct integration in the time domain. An example is taken of a
simple equation of motion with a single-degree-of-freedom

mﬁ+cd—u+ ku = R(r),
dr” di

(6.12)

in which u stands for the displacement, du/dr and dzu/ dr* the velocity and acceleration, respectively,
and R(t) the external load that changes with time. It is assumed that the response is already known up to
time 7, while the response at 7'+ Ar after a short time increment of Az is going to be calculated.

All the numerical techniques for solution of (6.12) requires some assumption about time change of
response. One of the assumptions is that the acceleration varies linearly with time within a short
increment of At

d*u(T + Ar) ) d*u(T)

) _ - 4 dr’ — dr? (r—T)_, (6.13)

where t:lzu(i"‘)/d.*'2 is the known acceleration at 7, while dzu(T+ A.i')/dl2 is the unknown acceleration at
T + At. By integrating (6.13) with time,

du(T + Ar) _du T) N d*u(T) ol {dzu(?’+ Ar) dzu(T)}A’

di de dr? 2 dr* dt”
_ du(T) L1 dzu(Tj At . dzuET)}A( 614

dr 2 dt” dr”
(T +Ar)=u(T)+ au(7) At du”(jT) A+ duu(T:rm) d u(T)}ArE

dr dr” 6 dt” dr*
- u(T) + —du(T) Al + A {1 d-u(T ,:L Ar) + 1 d-u(,,T) }Az2
dr dt* 3 dr*

Substituting (6.14) in the equation of motion (6.12) at T + At,

[m + %c + A: k} d'u(T + AI) = R(T + A!) - c{ du(T) + Al d-“(T)}

dr? dr 2 d?



dr 3 42
du(T) LA dzu(T)} k{uT o du(T) L A7 dzu(T)}
(6.16)

k{u(T) pa JT) (T)} (6.15)

dlu(T+Ar)R(T+AI)C{ d 2 dr’ d 3 dr

dr? B At AP
m+-—c+ k
2 6

Thus, the acceleration at 7'+ At is obtained. By substituting it in (6.14), the velocity and displacement
are obtained as well. Then, the calculation proceeds towards the next time increment.

Unfortunately, the numerical method as described above 1s nothing more than being conceptual. When
the time increment is greater than a certain fraction of the natural period of (6.12), the calculated
response erroneously grows without limit. This nature is called “conditionally stable.” The author prefers
some other methods that are unconditionally stable. For example, see Sects. 6.6 and 9.8.



LL) 6.6 Newmark’s B Method

Newmark proposed a popular method for direct integration of equation of motion

md;it + cd—u +ku = R(t) :
dr” dr

Newmark employed the following relationships

du(T + At) _ du(T) d*u(T)

dr dr +{(ly) a7

d*u(T + Ar) }Ar

dr?

7). p du(T + AI)}AF.

(6.17)

(6.18)

By comparing (6.18) with (6.14), it is found that a combination of =1/6 and y =1/2 represents a
linear variation of acceleration within a short time increment. Certainly, other combinations stand for

different variation of acceleration with time. By substituting (6.18) in (6.17),

2

(m + yYAtc + ﬁAr%)@ = R(T + A;) — c{(m(f? + Ar(l _ Y) d-;(’JT)}
2

k{u(r)mfhf)mz?[;ﬁ]

duZ(T)

(6.19)

Thus, dzu(T+ AI)/d12 is obtained. It is then substituted in (6.18) to calculate du(T+ A{)/df and
u(T + Ar). The analysis then proceeds to the response at 7'+ 2A¢.

The author prefers to use a combination of 8 =1/4 and y =1/2, which makes the analysis unconditionally
stable (see Sect. 6.5). A constant acceleration of dzw(x)x’df.2 = {dzu(T)fdf.z + dzu(T + m),’df.z}ﬁ is repre-
sented for by B =1/4, while ¥ =1/2 does not generate numerical damping. Figure 6.14 illustrates the

calculated response for ¢ = 0 and R = 0 with
the initial condition of u =1, du/dr =0, and
dzu/ dr* =k/m. As compared with the rigor-
ous solution of u = COS(\J% X r), Yy <05
produces erroncous increase of amplitude,
¥ = 0.5 successfully reproduces the response,
and y > 0.5 makes decay of response. This
decay is called numerical damping. Although
the numerical damping is a kind of error, it
is often used to erase erroncous impulse that
1s numerically generated when nonlinear re-
sponse of structure is analyzed. For detailed
mechanism of unconditional stability and nu-
merical damping, refer to Sect. 9.8.

It is certainly possible to solve the equation
of motion in terms of displacement, in contrast

Newmark.Beta.
damping.fig
Displacement

response
2 T

B=1/4,

- 50
——=75
=—==1.00

At = (Natural period)/20

Time/(Natural period)

Fig. 6.14 Free vibration calculated by Newmark

method



to the use of acceleration in (6.19), and then to calculate velocity and acceleration.
Newmark's method is one of the direct integration methods for equation of motion. The following

section addresses the mechanism of numerical damping and unconditional stability (Sect. 6.6) by applying
the method to a simple undamped (viscosity = 0) equation of free vibration without damping

d’u 3
F+w{,"u:0, (6.20)

in which w, stands for the natural circular frequency of this model.

The present calculation follows the original one made by Togawa (1975) with ¥ =1/2. In Newmark's
method, the variation of velocity and displacement over a short time interval of Ar is approximated by

(d—u) =(%] + A (1-7) d_? +y d_i‘
dr Jrea \df Jg dr” ), dr” ). .
du L1 du d*u
Up o, =Up+ A — | + A7 —— — | + - . 6.21
frae [ dt )T {(2 ﬁ][ dr’ ]T ﬁ( dr’ ]nm} 621)

By substituting (6.21) in (6.20),

1 W, YAl du 1 —0, YAt du
0 1+m 28(AN || 4 =1 Az ]_wzl_ﬁ(m)z dr ¢ - 6.22)
+ o, B(Ar) U o, o5 u,
By introducing an eigen value problem of this equation
0 1eazpay [| Y[ a 1m0 (J-BJar |4 '

in which the eigen value, A, is complex. Note that

du) _fdu _
(a)ﬂm = /'L[ " ]T and u(T + At) = Au(T) (6.24)

are implied here in complex numbers. When the numerical calculation maintains stability (calculated
response does not increase towards infinity, see Fig. 6.14), || < 1. When no numerical damping occurs,
furthermore, |A|=1. Thus, the eigen value has to be calculated. Because (6.23) has a nontrivial solution
of u (not zero), the value of determinant is equal to zero

A-1 @y YA (A +1)

1

IR

—z+@ﬁﬂo{%+y—zﬁ)_+Lumfﬁ+y—%}mf
1+ w,’B(Ar)’ 1+ w,’B(Ar)’

2+ =0. (6.26)

By denoting two solutions of A by A =4, and A = A,, which are either real or complex,



1+ a)(f[ﬂ +y-— E)(Aif)2 ) 6001(?’ - %)(N)z

AA, = - : = - 5 6.27
. 1+ w,’B(At) 1+ o, B(At) ©27)
The type of solutions, real or complex, depends on the sign (positive or negative) of
2 2 ] ? 9 1 2
2 -, (Ar) (—+y—2ﬁ] 1+m0-(ﬁ+y——)(m)
D= 2 __ 4 - 2,
1+, B(At) 1+ w,*B(Ar)
__ola) | 2(Ar) (y+lf —8By+—8y|. 6.28)
1+, B(Ar)* | ° 2
To achieve stability in analysis,
both |;{q‘ <1 and ‘}Lz| <1 6.29)

are needed.
Equation (6.27) is used to understand the mechanism of numerical damping,.

(1) When y =1/2, for example,

_ — (DUE(AI)E 2 201 _ _
AA, =1 and D——1+w02)3 (&7 {o,(Ar)(1-4p)-4}.

It is implied by A4, =1 that, if solutions of A take two real and different numbers, one of them is
greater than 1 and violates the requirement for stability (6.29). Hence, solutions of A have to be real,
equal to each other, or complex numbers. The requirement of D <0 leads to

o, (A1)’ (1-4B8)< 4.
Consequently, the dynamic analysis with ¥ =1/2 is

— Unconditionally stable when > 1/4
~ Stable when B <1/4 but Ar <2/(w+/1-4p)

~ Unstable if B < 1/4 and At > 2/(w,/1-4p)

(2) When y <1/2, (6.27) implies A, A, <1. The solution of the equation of motion decays with time
when D in (6.28) is less than or equal to zero. This is called numerical damping.



L) 6.7 Introduction to Seismic Response Analysis

An elementary analysis is made of a two-layered elastic horizontal deposit (Fig. 6.15). The surface layer
is equivalent to an alluvium (79 ), whilst the lower layer is an older deposit or sometimes a base rock.
In reality, there is often a stiff gravelly layer at the bottom of alluvium with SPT-N (Nf&) > 40. The age
of two layers is discontinuous (unconformity ~%#-) due to geological

history. z=

It is reasonable to assume a vertical propagation of S wave near the
surface (see Fig. 4.7). With reference to Sect. 4.4, the equation of

S-wave propagation is solved z=H
al’f =V al’f.
ar o

Fig. 6.15 Model of two-layered

When a harmonic shaking is the case, the horizontal displacement, u, deposit

is derived as

u, = E, cxp{ia)(r + V: ]} +F cxp{iw(z _Vi]} in the top layer (0 <z < H in Fig. 6.15)

sl sl

-H z—H .
u, =E, cxp{iw(z + ZV ]}+ F, cxp{ia)(t v ]} in the base layer (H < z),

s2 s2

where E, to F, are constants. Note that the real parts of these solutions are used in practice. When this
complex expression is not preferred, describe the solution as a sum of sin and cos functions. Shear stress
is given by T =Gadu/dz = pV.” du/dz,

T, = iw91K1[E1 GXP{M{"' + Vi‘]]} -k exp{fw[-’ - ‘;:1 ]H
T, =iop,V, [Ez exp{ia}[r * Z‘v_’ H]} o exp{iw[r : Z; HJH

Because the shear stress is zero at any ¢ at the surface (z = 0), unless there 1s no structure, F=E|.
Moreover, both displacement and shear stress are continuous at the interface (z = f).

2F cos —E +F, and 2EiPYL T g |

sl P2V 51

Thus, all the constants are determined in terms of E,.

. .
*L=E, cos A 4 Pi¥ar g O
128 |4 P2V Va

sl

— The amplitude of ground surface motion is 2E,.

— The free boundary condition at the surface (stress = 0) make the upward (£,) and the downward (F, =
E,) propagations equal to each other in their intensity.

— The amplitude of upward propagation in the base rock is E,. If the base rock is directly exposed to the
air (rock outcrop), 2E, is the surface motion. Hence, 2E, is called the outcrop motion.

— E, is produced by the earthquake source and the travel path of the earthquake wave. It is the true input
motion to the site of concern.

— The baserock motion of £,+F, has F, which 1s the result of wave reflection at z =/ and z= 0. F, is



affected by the nature of the surface layer and therefore is not the true INPUT to the site.
— Therefore, E, has a more essential meaning than E,+F,.

The baserock here may not be a real rock. Being called “the engineering baserock,” in reality it is often a
pleistocene soil (i, ki HIHERE) or a soft rock.



7 6.8 Amplification of Motion in Surface Alluvium

The amplitude of motion in a horizontal layer, U, is given by Amplitude of shaking

o 0-1 0 1
U = ‘ul‘ =2E, cos—.
Vi
The variation of U, with depth is illustrated in Fig. 6.16. U, is equal to 1 1
E,+F, at the baserock (z = H), and the ratio of U, at the surface and at the
base is conventionally called the amplification in terms of £ + F, denoted oz
by Amp(E + F) below. V_ 2 F
sl
oH
Amp|E + F)=1/ cos
P( ) / Vo 3 i
This amplification is greater than or equal to 1 and takes an infinite value

when a)H/VSl =(n—1/2)r where n = 1,2,3,---. The state of this infinite 4

amplification is called resonance. Theoretically, the base amplitude is zero Xr
at resonance. Fig. 6.16 Variation of
amplitude with depth

At the fundamental mode of resonance (n = 1) with Amp(E + F) — oo, the period of motion is obtained
by

_2r _4mH _4H
o v, V,

sl

T (6.30)

This particular natural period is denoted by 7, which is the time that S wave needs to make 2 return trips
between the surface and the base (21.4). See Table 21.2 for classification of subsoil by 7.

Amp(E + F) does not directly indicate the ability of shaking amplification of the surface soil. To show
this ability, it is more suitable to use the ratio of surface shaking and the input shaking signal. This goal
is achieved by another definition of amplification factor in what follows.

Another type of amplification is defined by the ratio of 10 AMP(2E vs E4).fig
surface motion to the true input motion £,. It is denoted An:llw(EJrF)
by Amp(2E) here as conventionally practiced. = 8 1 :  Amp(2E);
2 Amp(2E); | |impedance
E o v o S 6 i i} ratio=0.2
AmpRE)=— = cosw— +i Pi¥a 51nw— “_5 4
2E3 sl pZI/SE ‘/sl ?
| 2
f 2 < 2
=1/ lcos’ oH + oV sin oH (6.31)
\] ‘/H] p'_"/h'l 1/&1 0 -l
At resonance when chH'/‘V‘31 = (n —1/2)71’, 0005 10 aJllffV 2025 )<3Tlc0
WV, NSNS
Amp(2E) = LAACY (6.32) Fig. 6.17 Amplification of two types

PV,

sl

Figure 6.17 compares Amp(£ + F') and Amp(2F) for the case of impedance ratio p,V,/p,V,, = 0.2 and 5.
Note that Amp(2E) >1 (large surface motion) occurs only when the surface layer is softer (impedance
ratio < 1). When the surface is harder, the ground motion is reduced.

When the impedance ratio = 1, Amp(2E)=1.0 for any value of @ and hence £, = E,. This is a situation of



rock outcrop in which the surface motion is given by 2E, (Fig. 6.18). It is therefore true that Amp(2E) is
the ratio of motions at the surface of soil and at a rock outcrop (Fig. 6.18). It is important that resonance,
i.e. infinite amplification of Amp(E+F), is possible only when there is a vertical variation (gap) in

impedance. Amp(2E) does not take an infinite value even at the resonance frequency. Hence, an infinite
surface response does not occur in reality.



7 6.9 Significance of Qutcrop Motion

The amplification in terms of “2E” strictly means the increase in the intensity of the incident wave

amplitude
2 x (Amplitude of surface incident moion)  2E,

. Amplitude of surface moion

Amp(2E) =

which is the exact amplification in the surface soil.

T »X

2 x (Amplitude of incident moion in base rock) 2E,  Amplitude of rock outrock motion ’

In contrast, Amp(E + F) simply compares the amplitudes
of the surface motion and the motion at the bottom. The
bottom motion includes the downward propagation of
wave, which is the result of the response of the surface
soil, and, therefore, Amp(E + F) does not directly mean
the amplification made by local soil conditions.

7

Fig. 6.18 Significance of outcrop motion

When the baserock appears at the surface, it is called a

rock outcrop (#85). Since a rock mass is considered to

,|\BasinAmp.fig

be uniform and elastic, the nature of the incident motion 2
is identical at both the outcrop and base rock under ¢
. . . E
alluvium, see Fig. 6.18; < Rock
-~ “oufcrop

On
soil

which is assumed to be real and positive without losing

X

Fig. 6.19 Variation of amplification with
local soil conditions

generality.,

Since the shear stress is zero at the surface of both the

outcrop and the soil . :
an mput motion at

E,=F and E =F.

The surface motion at the outcrop site is given by
g =2Ey expl(ior)

Hence, Amp(2E) upon rock outcrop is equal to /.0.

The surface motion at the surface of soft alluvial soil has an amplitude of

What is recorded upon a rock outcrop is a
2E R motion. Since Er = E2 , the observed

rock-outcrop motion can be directly used as

the bottom of a soil site.

2E, 2E
RE,|= ], i = R ,
|, wH [p,vs,] . 2 WH | L, H [p,vsl] . 2 OH
lcos™ —+| — | sin"—— _fcos”——+| — - | sin"——
\J Vi P2Ve Va \l Va PV, Vi

where p, V., /p,V,, is called the impedance ratio. Consequently, Amp(2E) at a soil site is given by

1

1 P

|

J‘COS2 oH + iV sin’ oH
| AR 14

sl

Amp(2E) =

2

sl

(6.33)



as shown by (6.31). Figure 6.19 indicates the variation of Amp(2E) along the x axis. Since H varies with
x, Amp(2E) changes in the horizontal direction as well. The maximum amplification occurs at some
distance from the edge of a soft alluvial plane where the condition of resonance is satisfied. According to
(6.33), this maximum amplification is governed by the impedance ratio. Thus, the softer deposit of soil
is subjected to the greater amplification and the more seismic risk.



7 6.10 Seismic Response of Multi-Layered Ground

It is not uncommon that a studied Surface Altitude 20 30 40 50

ground consists of many different T &%‘1"_“%‘ B Re i —

types of soils. The surface fill is S e ____h value i

underlain by clayey and sandy soils Z ] Ru .

possibly together with gravel. When i S R oL —Fl—— Rs :

this is the case, it is a common s ) O Re = —

practice to assume a horizontally R Yue ' '

lay?red SlrallﬁCflllf)I{ (Fig. 6'?0) m One dimensional 10+ T—£ S Yeed LS T

which layers of different soils are — A -2 2 -

stacked in the horizontal direction. column . : 3‘; ; i
Fig. 6.20 Horizontally il Tos-2

In reality, there is a variation of soil layered stratification 20 —F = i“i Toc-2

type in the horizontal direction. Figure 6.21 compares boring : Tos-2

logs from two drilled holes that are only 4 m apart. Although m_;"“'z

the difference in logs depends on the personal interpretation -

of the engineer in charge, the two logs do not appear identical. Toc

It means that a two-dimensional analysis with this variation Eds-1

taken into account may be required. However, it is practically

difficult to run many field investigation (drilling bore holes) )
and to precisely understand the horizontal variation. Thus, a  Fig. 6.21 Two boring logs at Shin-Ohta
one-dimensional analysis on a vertical soil column (Fig. 6.22) site in Tokyo (by ADEP)

is commonly practiced today. 0

When a harmonic shaking is assumed, each layer has a closed-form
(19=4]

solution of displacement and shear stress. In the layer “” with an  z p, G, u, 7,
clastic property of G = pV.°,

u, = E!. cxp{iw[1+ ZVZJ J}JFFJ cxp{ia{t - y JJ} : b, G 0T ::
s ) .".".".".".".".".".“": z.
T, =iwp;V, [E exp{;a}[ﬁ ” ]} —F, exp{iw[r Ty ! JH, j

i 8f
in which z is the deplh at the top of this layer (Fig. 6.22). An elastic
formula 0[ G = pV.> was used. Since both displacement “u” and shear

stress “”" are continuous at a layer interface,

. Ziy1 T . Zj %
E; exp 0 +F; exp —ip 2 =E, +F,
Vsj Vsj

(6.34)
. Zi— % . 21— %
ijj{Ej cxp[:w%)—ﬂ CXP{"”%J}=P;+IV;+1( j+ Fi+1)—
sj

s
Note that z,, .~z stands for the thickness of layer . This set of equation makes it possible to describe
E. and F,, in lermq of E;and F;. Moreover, since the shear stress is zero at the ground surface, E,=F.
Comcqucntly, all the £, and F, mc]udmg those in the baserock, are described in terms of £, Thus it

becomes possible to calculatc the amplification in a multilayered ground.

Fig. 6.22 Idcalized ground
for one-dimensional analysis

Many boring logs show a thin soft layer of clay. A one-dimensional analysis that precisely considers this
soft layer gives very small surface motion; wave energy is reflected back into the ecarth by this layer. Is
this calculated motion reliable? Yes, it is, if the layer extends to a wide range. In practice, however, a
thin layer (<50 cm, e.g.) is eliminated from analysis because it is probably a local clay pocket (deposit).



L) 6.11 Amplification of Motion at the Top of Hill

At the time of 1993 Kushiro-Oki earthquake (##% 7 #5%), the maximum acceleration exceeded 900 Gal
(=cm/s’) at the Kushiro Meteorological Observatory (844 %:%), which was located at the top of a hill
(Fig. 6.23). Although this record was surprisingly strong among previous records so-far measured at the
ground surface (not inside high buildings), it did not cause structural damage to the observatory building
except that shelves and other objects inside fell down to the floor. The reduced damage in the structure
was probably because the maximum acceleration continued for a very short time (spiky impact). After
this quake, many accelerometers were installed in the Kushiro City and the 1994 Hokkaido-Toho-Oki

earthquake (lLipEHR G IHIEE)  was 1000 1993KushiroEW fig
recorded. Again the acceleration at the g " ¢l I.. Magnitude=7.8
observatory was the greatest (Fig. 6.24), ‘% & I Epicentral distance=14km]
greater than those in the alluvial plane. E E 0

§ = I Amax= -919 cnv/s”
It is noteworthy that a spiky strong ac- < '10000 — ' —

celeration is not a big problem to structures.
This is because it does not give a sufficient
time to cause large deformation/displace-
ment (see Sects. 12.1 and 12.2).

Another striking record was the one greater than
1,800 Gal (1.8 times gravity) at Tarzana near
Los Angeles during the 1994 Northridge
carthquake (Fig. 6.25). Although this motion
was not spiky, the damage was still relatively
light, see Fig. 7.4. During the 1995 Kobe
carthquake, the Kobe Meteorological
Observatory, which was located at the top of a
small hill, recorded 818 Gal in the NS direction
that was greater than what were recorded at other
stations (Table 7.1). Onishi et al. (1999) collected
many records observed at the Kushiro Observa-
tory to show that this site is of greater acceleration

60
Time (s)

Fig. 6.23 EW acceleration record at Kushiro

Meteorological Observatory in 1993 (JSSMFE, 1994)

20 40 80 100

Maximum acceleration
in Kushiro City
during the 1994 Hokkaido

Toho Oki earthquake 132
145 O o
177
' P
. 263 320
Kushiro ) _>' 58
Observatory / 1374
0 2 km 475 Gal s il WJ 171
L1 |

Numbers: Max. acceleration

in Gal KushiroObsAce.fig

Fig. 6.24 Distribution of the maximum acceleration
in Kushiro City recorded in 1994 (WCEE, 1996)

than other sites. It is very interesting that both the Kushiro Observatory

and the Tarzana sites are located at the top of a small hill (Fig. 6.26).

This suggests a topographical amplification of earthquake motion

(HZ T 2 % HORRE) 0 KA ).

Gal 2000
(cmfsz) 0! 5 East;:W’est

-2000 | ’ i

2000

15 20
Time (s)
Fig. 6.25 Acceleration at Tarzana during the 1994 Northridge

earthquake (epicentral distance = 7km)

10

Fig. 6.26 andscapc from tp
of small hill at Tarzana site



& 6.12 Analysis on Hill-Induced Amplification

[t seems that the shape of a hill concentrates the energy of an
carthquake motion to its top because the width of a hill decreases
at higher clevations. Bear in mind, however, that thus amplified
motion does not necessarily induce a heavy damage to structures,
although the acceleration is strong. To account for the hill effects,
an analysis is made of propagation of SH wave (Sect. 4.2) in a
simplified model of two-dimensional topography in Fig. 6.27. Since
the attention is focused on the topography, the material properties
are uniform.

Fig. 6.27 2-D simplified model

The model consists of a hill that rests on a vertical column of base  of hill subjected to horizontal
rock. G and p stand for the elastic shear modulus and the mass  shaking
density in both hill and base. The geometry of the hill gives the
following expressions,

Width of hill = Bz/(z;+ H) and Shear force =Bz/(z;+H) Xt for z, < z<z,+ H in which 7 is the shear
stress. When “u” designates the horizontal displacement, the equation of motion of horizontal shaking is
derived as

z Jdu d z d z ou d’u 26’( &u]
B gu_21p =20 G2 andtherefore, zZ%=v>2[; %
p i H 82.[ zU+HT] &[ T 8::] and therefore,  z=5=V, z— |,

where V. =./G/p . By assuming a harmonic oscillation, u(z,t) = U(z) exp(iox),

AU e S U7 =0 and, tience, T=C.J,| & |+ ¢, %[ % |,
*dz V V

5

Vz
s de

5

in which J, and Y, are Bessel functions of the first and second kinds. Theories of Bessel functions are
briefly described in Sect. 6.15. Accordingly, the shear stress at the bottom of the hill (z = /) is given by

T= G(%) exp(ion) = —w./pG {C, J, {M} +C, YI{MH exp(iar)

&

for which a formula of dJ,(x)/dx = —J,(x) was used.

In the elastic base, the conventional solution of S-wave propagation is valid

u=FE cxp{ia{: + m]} + F cxp{i(o[t - M]}
|4 4

At the top of the base, u=(E+ F) exp(iex) and 7 =iw./ pG(E—F) exp(iowt). By considering the
continuity of “u” and “z” between the hill and the base (z = z,+ H) together with the boundary condition
of 7 =0 at the top of the hill (z = z,),

M{ F(@x,/V.) }

—JI(QZU/VR)

G ]

5 8 s s




A o s

F=-E+CJ, {_“’(Zn; H )} +C,Y, {LZ‘; H)} :

5 s

Consequently, amplifications produced by a hill topography are derived as

Amp(ZE)inzzg)I = Y T, 2
Jﬁ[}o{w(z{;{ H)}Yl{a;:u J _J, [a:;j, ]%{w(z(,{ H)H
IR R G s]
2V,
Amp(E + F) IU(Z(TL)}= Amzo

for which the Lommel’s formula, Y, (x)J,,,(x) - J,(x)Y,,,(x) = %zx’ was employed.



& 6.13 Calculated Amplification Effects of Hilly Topography

The amplification effects of a hill, Amp(2E) and Amp(£+F), are calculated by using the theory as
developed in Sect. 6.12. In this section, five types of the hill shape are employed as illustrated in Fig.

6.28. Among them, Amp(2E)=1 and Amp(E+F)= ‘1/cos[wH/K)
Base width, B” at the far right
Top width =0 3B/4

o A A A I

<4 > Q—' Q—P 4—P ‘—D
Basec width = B

are known for the case of “Top width =

Fig. 6.28 Shapes of the analyzed hill

The calculated amplification, Amp(2FE), is illustrated in Fig. 6.29. When the top width is shorter than the
bottom width, the amplification is always greater than unity irrespective of the shaking frequency. This
amplification is equal to the amplitude ratio between the hill top and the surface of low land (Fig. 6.29).
It is evident that the triangular hill with the top width = 0 achieves the greatest amplification at all the
frequencies. In contrast, the top width = B is of Amp(2E)=1 at any frequency as the theory of uniform
elastic medium states. It seems that the assumption of uniform elasticity is not too bad because real hills
are made of relatively harder materials than soft alluvium.

The calculated large amplification for the case of top width = 0 is reasonable. The seismic energy that is
incident at the base travels upwards. As the width of the hill decreases at higher elevations, the energy is
concentrated within a limited hill width. Since the greater energy density makes the larger magnitude of
shaking (see Sect. 4.11), the case of the zero width at the top demonstrates the largest amplification.
Note that Amp(2F) in Fig. 6.29 approaches the theoretical value of ~/width ratio at higher frequencies.
When the top width = B/4 for example, the width ratio = 1:4 and the shaking energy density = 4:1.
Hence, the amplitude ratio is 2:1.

Figure 6.30 shows Amp(£+F) of a hill topography. It is interesting that the resonance in a triangular hill
(top width = 0) occurs at a frequency higher than those of more trapezoidal or rectangular topographies.

AMP(2E) Top width=0| HillTopoAmp.fig Amp(E+F) HillTopoAmp2.fig
4 _— B/4 : T 10 LB T T 1"
| |- B2 | B 1) | Top : | 1 -
C) I L o~ 8 HHpvidn—i !
—1 i ] R U '
B T 6 1 ] :
2 L ] i 1 \ h
Ry 4 N L
B e e S s — i — L7 A
QP et e fepsfapdierin eyl epepiepdie 5 B 'l/| \/ v | ‘\ ]
— 1 J \-“-‘ 3Bfl4“-‘--' ‘__l
0 I ] 1 0 ] 1 |
0 In oH/V 2R in 0 I mH/V 2R in
5
Fig. 6.29 Calculated amplification, Amp(2E ) Fig. 6.30 Calculated ampllf"catlon Amp(E +F),
at the top of a hill at the top of a hill

Further note that the resonance in Amp(E+F) in Fig. 6.30 does not affect Amp(2E) in Fig. 6.29.

Because of numerical reasons in a computer, the width of the top = 0.000999, 0.24999998, 0.500000,
0.750000, and 0.999001 times B were employed in the analysis.



7 6.14 Observed Topographic Effects

After the experience of strong acceleration in Kushiro (Fig. 6.23), earthquake motion has been observed
at the site in Kushiro at the surface and bottom of the hill (vertical array observation). In addition to Ohta
(1995) who showed amplification between the surface and the foot of the hill slope [Amp(2E)], Kanda
and Motosaka (1995) as well as Ishida et al. (1996) showed increased acceleration at the surface as
compared with that in the bottom layer of the hill. It seems that the amplification between the surface
and the bottom includes not only the topographic amplification but also the one due to surface softer
material that occurs even in a level topography.

100 ] | | Toptl)logical.ﬁg |
Rock type Vs, fi
~ 80 A __ P Seismograph No.3 £
Rock type £ 60 B —
A : Silty mudstone g -
B : Mudstone < 40
C: Sandstone :‘% -
D : Sandy tuff -
: = 20 No5 1 F .
E: Tuff . I?]D.ID | I |
0 50 100 150 200 2500 400 800
X (m) v, (mis)

Fig. 6.31 Site of observation of topographic effects on earthquake amplification
(after Kurita et al. 2005)

The topographic amplification as calculated in Sect. 6.15 is validated more clearly by another set of
observed acceleration time histories during the 1985 Chiba-Toho-Oki earthquake. Kurita et al. (2005)
recorded acceleration histories in and on a small hill as shown in Fig. 6.31. The Fourier spectra of
acceleration records at two stations, No. 3 at the top and No. 5 at the foot, were calculated and their ratio
was obtained as shown in Fig. 6.32. It is seen therein that the spectrum ratio that stands for the
amplification of Amp(2E) increases with the shaking frequency. This finding is consistent with the
findings in Fig. 6.29. The total collapse of houses on a terrace hill in Balakot of Pakistan during the 2005
North Pakistan earthquake (Fig. 6.33) may be the results of this topographic amplification.

TopoSpectrum.fig

Top of mountain /
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_ No.3/No.5
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Fig. 6-:_”2 lObservgd topogrﬂphic effe_cts Fig. 6.33 Completely destroyed houses on terrace hill in
on seismic amplification (after Kurita et Bajakot of Pakistan during 2005 earthquake
al., 2005)

Suppose a topography in Fig. 6.34 where the crest angle is given by vz. Midorikawa (1999) presented
an empirical knowledge that the hill-top motion is amplified by 1/v, irrespective of shaking frequency,
as compared with the motion on a free field. Kurita et al. (2005) presented the maximum horizontal
accelerations that were observed at the top and the foot of a mountain. With reference to the topography



of the mountain in Fig. 6.31, the value of v is 0.57. This value suggests the amplification of 1.75. The
real amplification in Fig. 6.35, however, is greater than 1/v.
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1996)

[t is interesting to discuss seismic response and amplification in a dam. San-no-kai Dam (1L Eifg % 2) is
an carth-fill dam which measures 37 m in height and 145 m in length. Its earthquake response has been
monitored since 1960s (Tamura, 1996) and records of two quakes are compared in what follows.

Figure 6.36 compares the acceleration records during the 1964 Niigata carthquake (Magnitude = 7.3). In
the top of this figure, the motion in the transverse direction (in the direction of valley) at the crest (top)
of the dam is indicated. The maximum acceleration is 109 Gal. In the rock abutment on the left bank, the
motion was smaller (57.2 and 59.9 Gal). By considering this rock motion as the outcrop motion, the
amplification of Amp(2E) is derived as 109.2/57.2 = 1.91 and 109.2/59.9 = 1.82. In contrast, Figure 6.37
presents the record during a minor earthquake in 1982 (Magnitude = 6.2). The maximum accelerations at
the crest and at the left abutment are 86.9 Gal and 13.4 Gal, respectively, making Amp(2E) = 6.49. Thus,
the amplification during these two earthquakes are completely different due probably to nonlinear
stress—strain nature of soil (Chap. 9). More in detail, the stronger earthquake developed larger shear
strain in soil and made the shear modulus smaller, while damping ratio was made greater. Hence, the
amplification was reduced. The amplification thus depends on the shear strain during shaking.



& 6.15 Theory of Bessel Functions

The theory of Bessel functions (e.g., Wylie, 1975) states that a Bessel’s differential equation of order v;

X -v')y=0 (6.35)

has a solution of

y=GJ,(x)+GY,(x),

o ]

where J and Y are Bessel’s functions of the first and the second types, respectively, while two constants
of C, and C, are determined so that boundary or initial conditions may be satisfied. Thus, Bessel
functions of J and Y in (6.35) play such roles that are similar to those of sin and cos functions in a
harmonic differential equation.

When x is sufficiently large, the following approximate relationships hold true

I f
J,(x) = J‘ECOS(I—E—U—E) and Y, (x)= ll'i sin[x—f_%)_
o 4 2 \ 4 2

When x is very small, conversely, and v is not zero, the series solution of (6.35) suggests

W=t (2) g (2]

r(1+v)\2 ~sinval(1-v)\ x

where T stands for a Gamma function and T'(n)=(n—D)!=(n—1)(n-2)(n—3)---2-1 whenn=1, 2, 3,
4, -

Bessel functions give a set of general solutions for a differential equation that takes the form of

edyy x(a+ 2af:uc"’)ﬁ +{e+de +b(a+ p-1)x’ +b°x*" }y =0.

dx dx

The solution is given by
y=x" exp(—ﬁxf’){c, J,(Ax7)+CyY, [M)},
in which

a=(1-a)2, B=b/p, A=4ld/q. and v=1/1-a) —4c/(2q).

Differentiation of Bessel functions is made possible by

dJ’U(x) _ v 3 dYu(r) =Y -
S ;JU(A) -J,,,(x) and . ;Yv(x) —Y,.(x).

Finally, the Lommel’s formula is important

B ()0 (6) = 1, (9, () =



& 6.16 Infinite Boundary Condition

Numerical analysis on seismic response of two-
dimensional or three-dimensional shape (embankment,
foundation of structure, etc.) is often conducted by finite

: wave propagation which in reality
goes back into semi-infinite carth

element or finite difference formulations. It is commonly
the case that those numerical methods work on a limited
part of ground although the real ground has an infinite

size (Fig. 6.38). This discrepancy may cause such a
problem that the downward propagation of seismic
motion is reflected at an artificial boundary of the domain
of analysis while in reality the motion goes back into
the infinite half space (see one-dimensional example in
Fig. 6.39).

=

Incident earthquake motion
coming from fault

Fig. 6.38 Numerical analysis on limited size

To remove the seismic wave energy that is reflected at
the artificial boundary, a special bound-
ary condition is needed, which accounts

of model out of infinite halfspace

F: Reflected

for an infinite size of the real ground.
Without making reflection of wave, this
kind of boundary condition is called
energy absorbing boundary, energy
transmitting boundary, silent bound-
ary, transparent boundary, infinite
boundary, etc.

!
f

W4

Artificial
reflection

_iurface

4+— 44— <4

E: Incident

The simplest energy absorbing
boundary was proposed by Joyner
(1975). Fig. 6.40 illustrates that a
boundary is placed in an engineering
base rock, which is actually not
necessarily a real rock layer but
possibly pleistocene or tertiary hard

Transmission into
semi-infinite space
Fig. 6.39 Artificial
reflection of seismic
energy at boundary of
numerical model

wave

Fig. 6.40 Vertical wave

propagation at engi-
neering base rock of
one-dimensional model

soil (V=500 m/s for example). It is a

convention to treat this base as an elastic medium. In a one-dimensional
vertical wave propagation, the S-wave propagation at the base is expressed
by an elastic model

u=E|t+=|+Fl1-=]|
v, 4

in which £ and F are arbitrary functions, « stands for lateral displacement A PG
and V, is the S-wave velocity in the base rock. Note that S wave consists RN
of superposition of incident and reflected waves (Sect. 4.4), and it is g o l '
aimed by an infinite boundary to erase the F component (Fig. 6.40). e

) ) : 2 x (incident
Accordingly, velocity, v, and shear stress produced by S-wave motion
are given by

(6.36)

displacement)

Fig. 6.41 Mecchanism of
viscous boudary condition



r:G@ZNf‘pG Eli+ X |-Fli-X]|, (6.37) Distance
oz v, 4 - >

[[111]

5

where E’ stands for a derivative of E. Note that the first term A

of the velocity formula gives the velocity induced by the incident = 2 g

wave, v;, which is produced by fault mechanism and wave 2 hg 2 ?;.,

propagation in the elastic earth e ]

e

.

i= E{I +i]- (6.38) ISR ERE CLER AN SRS LN SR\ Ay

v Incident wave
Fig. 6.42 Two-dimensional idea
It is then interesting that shear stress and velocity are related of viscous boudary condition
with each other by

7=./pG(2v, —v). (6.39)

This implies that the soil mass above the boundary is shaken by shear stress (6.39) in the base which is
equal to a velocity difference, 2v, — v, multiplied by \/p7G . This idea as proposed by Joyner (1975) is
illustrated in Fig. 6.41 to show that the effects of elastic infinite medium is numerically reproduced by
connecting the surface soil layer with 2 x(the incident soil motion) by means of a dashpot of \/E
Thus, the energy of incident wave is transmitted through the dashpot into the surface soil, while the
energy of the reflected wave is absorbed.

The viscous boundary condition in Fig. 6.41 is able to absorb the reflected S wave perfectly in a
one-dimensional case. For P wave, furthermore, a similar dashpot is installed in the vertical direction, for
which G is replaced by (Young’s modulus)x(1—v) /{(1+v)(1-2v)}; lateral distortion being confined
(K, condition) as is the case in an infinite level ground.

The viscous boundary perfectly absorbs wave energy when P and S waves propagate perpendicular to
the boundary. When the wave propagation direction is oblique, which is often the case in a two (or
three)-dimensional analysis (Fig. 6.42), the efficiency decreases (Lysmer and Kuhlemeyer, 1969; Lysmer
and Waas, 1972). In this regard, White et al. (1977) attempted to optimize the dashpot coefficients for
the minimal reflection of wave energy.

There are many more techniques of infinite boundary. Clayton and Engquist (1977) used what is called a
paraxial equation in place of the conventional wave propagation equation. When displacement is designated
by u, a paraxial equation of S wave propagation is written as

J*u d*u
=V —. 6.40
&2 5 &’C(}f ( )

The solution of this paraxial equation is evidently given by

_ X
u—E[r+V), (6.41)

8

which implies that wave propagates only in the negative direction of x coordinate.
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s X
boundary Zl

Reflected wave : B, exp{iw{r _?r]]
+
Incident wave : Acxp{ia{z + %ﬂ Fig. 6.44 Infinite boundary zone
s for superposition boundary in
Free ‘— > x perp ry

two-dimensional analysis

boundary —

\ Reflected wave : B, cxp{i a)[z - i]?
Vi In contrast to the conventional wave
propagation equation (solution 1is
Incident wave : Acxp{i(o[z + iﬂ (6'36))’ whi.c.h allows wave prol_)aga.lion
. vV in both positive and negative directions
— lnﬁmtc ‘_ » X " of spatial coordinate, the paraxial equa-
boundary tion allows wave propagation only in
Fig. 6.43 Superposition of fixed (Dirichlet) and one direction. Thus, waves can prop-
free (Neumann) boundary conditions for agate only in the outward direction at
infinite boundary condition the infinite boundary, and no reflection

is possible. This idea was used by Ak-
iyoshi et al. (1994) as well. Cohen and Jennings (1983) demonstrated its application to a simple one-
dimensional wave propagation. Note that both viscous and paraxial boundaries assume the infinite space
to be linearly elastic.

Smith (1974) developed a different infinite boundary technique in which solutions from two different
but conventional boundary conditions are superimposed. When the wave that arrives at the boundary is
specified by a harmonic function, for example, of A cxp[ia)(t + x/VS)] (Fig. 6.43), the fixed boundary
(zero displacement at x = 0) gives a reflected wave such as

8 8

Reflected wave at fixed boundary = B, cxp[ia{t - %H =-A cxp[iw[t - %H (6.42)

In contrast when the boundary is free (zero shear stress),

Reflected wave at free boundary = = B, cxp{iw[t - Vr]] =A cxp{iw[t - %H (6.43)

8 s

By superposing (6.42) and (6.43) and then dividing by 2, the reflected wave is made null, while
maintaining the incident wave unchanged. In practice of analysis, calculation is conducted twice with
different boundary conditions and the solutions are added and divided by two. This superposition
boundary has been used by Cundall et al. (1978), Kausel and Tassoulas (1981), Kunar and Rodriquez-
Ovejero (1980), and Kunar (1982). This boundary condition works in a time-domain analysis in which
an equation of motion is integrated along the time axis.

In practice of two-dimensional analysis, the reflected wave may hit another boundary and is reflected
again. This multiple reflection makes superposition very complicated. To avoid this, the superposition is



conducted periodically after a short specified time interval. Figure 6.44 illustrates an infinite boundary
zone and the superposition is conducted before the reflected wave comes out of this zone.

In contrast to the foregoing boundaries that >
work in time-domain analyses, the energy 20 B e B
transmitting boundary by Lysmer and :g /' § 943
Drake (1971, 1972) as well as Lysmer and & <5
Waas (1972) works in frequency-domain § 7
analyses, which assume seismic shaking ;;B _g %
as being superimposed harmonic motions. E g \ 4 a%
By considering the ground response to be M © < >

Viscous boundary with seismic

Rayleigh and Love waves, harmonic stress . :
incident motion

response near the lateral boundary (Fig.
6.45) is calculated and employed as a lateral
boundary condition, thus eliminating artifi-
cial wave reflection. This method has been
used in combination with viscous boundary at the bottom (Fig. 6.45).

Fig. 6.45 Combination of energy transmitting and
viscous boundaries for analyses in frequency domain

The infinite boundaries so far described consist of special mathematical considerations. In spite of this,
they have a limitation that nonlinear stress—strain behavior cannot be easily handled. This shortcoming
may be significant in analyses of soft ground undergoing strong motion and liquefaction in which soil
nonlinearity becomes substantial. Under such situations, elementary and primitive methods may be
useful. The simplest method is to locate boundaries at a far distance from the area of interest; making
“distance” in Fig. 6.42 large enough. This implies that energy dissipation due to nonlinearity (stress—strain
loop) makes waves decay during propagation and the unfavorably reflected wave does not affect the
calculated response in the interested zone. The lateral boundary may be (1) free horizontal motion and
zero vertical motion (Fig. 6.46), or (2) repeated boundary (Fig. 6.47) for a symmetric geometry. Note
that static active failure of a vertical lateral boundary has to be prevented by, for example, applying Ko
static earth pressure in Fig. 6.46. Fixing the vertical displacement prevents ground subsidence during
shaking and may not be appropriate. On the other hand, the repeated boundary makes horizontal motions
at both right and left sides equal to each other and implies that identical model is repeated in the
horizontal direction. This situation is similar to that in a laminar box (Sect. 24.13) in shaking model
tests. Note again that lateral boundaries should be located at a sufficiently far distance so that the
reflected wave may be too weak to affect the calculated response in the central part.

Equal motion at

‘i}_ left and right
_}2 boundaries by
/} _ < num.criceﬁly an_
e necting them by
LDJ o ;&LDIJ o rigid columns

Viscous boundary
for wave incidence

Fig. 6.46 Horizontally freec boundary. Fig. 6.47 Repeated lateral boundary

There are more attempts so far made to produce infinite boundary conditions. For example, Akao and
Hakuno (1983) predicted the displacement at an infinite boundary by using previous boundary displacement
together with displacement inside the domain of analysis. In 1980s the author and Dr. O.Al-Hunaidi
tried to develop an energy absorbing boundary for 2- or 3-dimensional nonlinear analysis in the time
domain. The idea was to remove numerically the kinematic energy near the boundary while fixing the
strain energy therein. This was however difficult and the attempt was incomplete.



7~ 6.17 Exercise No. 2 of Dynamic Response Analysis on Elastic Ground

Figure 6.48 illustrates a topography of a horizontal free field and rock outcrop. Material properties and

clastic and parameters are supplied in the figure.

1. Assume harmonic motion (sinwt and cos wt) and express the amplitudes of F|, E,, F,, E/, and F,' as
functions of .

2. Plot Amp(E+F) and Amp(2E) against wH/V,, in which @ is the circular frequency of motion. You
can assume two kinds of the impedance ratio (plvsl/pgvsg).

3. Suppose that the earthquake displacement at the surface of outcrop is expressed by

Uy (1) = 0.02 sin 27 +0.01 cos6ar +0.002 sin 207 (6.44)

as plotted in Fig. 6.49. Calculate and plot the
function of the acceleration time history at the
top of the outcrop.

4. Suppose I1=12 m, V=150 m/s, and V ,=800
m/s. Assume any realistic values for mass
density of soils. Calculate and plot the time
history of displacement at the surface of the
alluvial deposit.

5. Calculate and plot the acceleration time history E,
at the surface of the alluvial deposit.

6. Compare maximum values of displacement and Fig. 6.48 Model of free field and rock outcrop
acceleration at the surface of alluvium and the

T

E*=E, F,*

outcrop.
w = |
Tz 001 Ay N/ v/
e E 0.00 | i
1=
Eg -0.01 | |
©= 002 i E1.2.2.fig
-0.03 | I

0.0 0.5 1.0 1.5 2.0 25 3.0
Time (second)

Fig. 6.49 Displacement time history at outcrop
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Chapter 7

Pseudostatic

Limit Equilibrium Analysis

Turfan & 2 #dk in silk-road China was an independent trading city in early seventeenth Century. Being
ruled by a Chinese royal family, Turfan warmly hosted a Chinese monk, Xuanzang, &2 %%, who
traveled to India on foot for studying true Buddhism. This city had been destroyed by war, however,
when the monk visited it again 17 years later on his way back to China.



=7 7.1 Seismic Coefficient

Strong earthquake motion used to destroy many brick structures "R OBSENE
and killed many people. Figure 7.1 illustrates an example in :
Tokyo in which a brick tower of 12 storeys was destroyed in the
middle. In those days there was no clear idea to design structures
against earthquake effects. The same mechanism of collapse is
still seen widely in many nonengineered structures in the world
and the number of victims is substantial.

WRSERT  HiONE

The method of seismic coefficient (52 ) is the first measure to
design facilities against earthquake effects. This method statically
applies a force to a designed facility (pseudostatic or quasi-static
method). The magnitude of this force is specified to be KX W in
which K is called the seismic coefficient and W is the weight of
the facility. Before this idea, there was no design method against
carthquake effects. Since this method works easily with static
calculation, it is still widely used. Figure 7.2 is an example of F i

slope stability analysis. Fig. 7.1 estroye ower in

Tokyo during 1923 Kanto
A theoretical background of seismic coefficient lies in the d"Ale- carthquake (photograph from

mbert’s principle (¥ 7 > ~— L ®Jii#) of mechanics. When abase  jgcg report)
of a structure has an acceleration of 4, the effects of this shaking

(S o rms s ERE) (118)

to the overlying structure is equivalent to a force of (4/g)W in the Static =

opposite direction from the acceleration (Fig. 7.3); “g” stands for inertia

the gravity acceleration. force E

Thus, the seismic coefficient KxW =AWy ——

of “K™ appears to be equiv-

alent to 4/g. >
Weight W Acceleration = 4

The value of K today in
Japan is 0.15-0.2 or greater.
There is a variation in K,
depending upon the local seismic activity, the
importance of facilities, and the local geology
or soil conditions.

Fig. 7.2 Example of clementary  Fig. 7.3 d’Alembert’s principle of
seismic slope stability analysis mechanics.

The method of seismic coefficient is good
because it is simple and the factor of safety
can be calculated by the same way as the
conventional static stress calculation. No
advanced analysis is therein necessary. It made
a great contribution to the improvement of
seismic safety.

Problems lying in the seismic coefficient are

#ps
as follows:

Fig. 7.4 A small hut that survived the 1994

1. The real seismic force is cyclic, changing Northridge earthquake

direction with time, and its duration time is
limited. In contrast, the seismic coefficient method applies a force in a static manner. This seismic
force overestimates the risk of earthquake failure.

2) At the time of 1994 Northridge earthquake near Los Angeles, the maximum horizontal acceleration of



1.8 G or possibly 7.9 G was recorded at Tarzana site (Fig. 6.25). Within tens of meters from the
accelerometer here, a small hut did not suffer a damage (Fig. 7.4). Was this structure well designed
against a horizontal static force as intense as 1.8 times its weight?

3) Thus, the relation between K and the maximum ground acceleration is not clear. 1.9 G acceleration
does not mean K = 1.9. Study on seismic damage of quay walls led Noda et al. (1975) to propose

K=(A./8)" /3, (7.1)

in which 4, is the maximum horizontal acceleration (Sect.
12.3).

4) Many structures exhibit dynamic deformation during earthquake
shaking. The intensity of shaking is normally greater in the
upper portion than in the lower level. Therefore, a greater
inertia force seems more appropriate near the top than near the
bottom. This idea, called the modified seismic coefficient meth-
od, is already practiced in many situations; for example fill-type
dams (Sect. 7.2).

The pioneer of seismic coefficient method of design in a modern
sense was Prof. Toshikata Sano (1916 #: %5 #H# +:; Fig. 7.5). He '

got an idea to apply horizontal force in design after his damage ‘

investigation on Great San Francisco earthquake (Sano, 1906). - B

Since then, this method has been used at many places of the  Fig. 7.5 Prof. T.Sano (from
world. This method was further combined with the Coulomb Memorial book of Dr. Toshikata
active earth pressure theory (Appendix 1) to be the famous  Sano owned by Civil Engineering
Mononobe-Okabe seismic (active) earth pressure theory (Sect. Library, University of Tokyo)
12.5).

The idea of earthquake resistant design based on the seismic coefficient is written as
Factor of safety = Resistance / (Static + seismic force) > 1. (7.2)

Housner (1984) stated that the method of seismic coefficient was adopted in a design regulation in Italy
after the 1908 Messina earthquake; Prof. M. Panetti proposed to design the first floor of a building with
the seismic coefficient of 1/12, while upper stories with 1/8. The increased seismic coefficient in upper
floors stands for the dynamic response of a building. This idea is equivalent with the modified seismic
coefficient in Fig. 7.9.

Nakamura (2005) carried out dynamic centrifugal tests on distortion of a gravity retaining wall (refer to
Fig. 12.25). He considered that 4 = 670 Gal of his seismic shaking was equivalent to the results of
pseudostatic analysis in which K=0.39 made the factor of safety = 1. This is because 4, = 670 Gal
triggered lateral translation of 1.5% of the wall height which seems to be equivalent with factor of safety
= 1. Note that A __= 670 Gal as substituted in (7.1) gives K = 0.29.

The method of seismic coefficient has drastically reduced the extent of damage and the number of
casualties (victims) when it is “properly applied” to design and construction practice. It seems that this
design principle was most effective for such brittle structures as the one in Fig. 7.1 which were made of
bricks and a single big impact was enough to completely destroy them. See the highly brittle relationship
between force and displacement in Fig. 7.6.

[t seems that traditional (brick, adobe, and wooden) structures have had such a highly brittle nature (Fig.



7.6) that the resistance force drops significantly after the peak resistance. According to the method of
seismic coefficient, seismic safety is achieved if the peak resistance is greater than the force (static+seismic).
A catastrophic failure is possible, however, if the force level after the peak is lower than the static force.
This was the case in the tower in Fig. 7.1. Another example of this type was Arg-¢-Bam in Fig. 7.7.
Being constructed before 500 BC, Arg-e-Bam was a miraculous ruin of an old fortress or citadel and a
town where all the structures were made of adobe bricks. Upon the earthquake in 2003, however, those
marvelous brick structures were destroyed instantaneously by strong shaking.

Recent developments of reinforced concrete and steel struc-
tures as well as geotechnical structures have changed the
force—displacement relationship from a highly brittle one
to a lightly brittle or ductile one. Since the force level after
large displacement (deformation) is still held greater than
the static force, a catastrophic failure is not so likely. In
such a situation, it may not be necessary to maintain the
factor of safety greater than 1 by making very elaborate
design and spending money on high resistance. For more
economical construction, the design requirement may be
relaxed to some extent by allowing for the seis-
mic factor of safety < | and still keeping the
resultant displacement small enough (within an
allowable extent). This is the aim of recent
performance-based seismic design (Sect. 14.7).

Since the performance-based design focuses
mainly residual displacement, a large value of
acceleration, 4__, is not necessarily taken seri-
ously. In case the duration of 4, is short (Fig.
5.11), an equation of motion does not give large
displacement. The nature of earthquake motion

Force

Ductile

Lightly brittle

Static
force

Highly brittle

Displacement

Fig. 7.6 Conceptual illustration of force-
displacement relationships

will be more reasonably considered by  Fig. 7.7 Damage of brittle structure (Arg-e-Bam
pCI’fOI’manCC-bHSCd dcsign than the convention- Castle after 2003 Bam ear[hquake, ]ran)

al seismic coefficient method, which is influ-
enced unduly by the magnitude of 4. Since

displacement analysis is conducted, on the other hand, the performance-based design requires more
detailed understanding of soil behavior (more than strength) and hence more precise soil investigation.

Note that well-designed structures may be ductile during a strong earthquake, but furniture in rooms may

fall down (highly brittle behavior) to injure residents.



LL] 7.2 Modified Method of Seismic Coefficient

The idea of uniform acceleration from the top to the bottom of a structure (Fig. 7.2) is not necessarily
correct. It is often the case that the top exhibits a greater magnitude of motion than the bottom;
amplification in flexible structures. One of the examples of this situation is found in an earth dam of
which the trapezoidal shape increases the top motion significantly (see Sect. 6.13).

Acceleration
Figure 7.8 illustrates a situation in which Mass = m, ' > A
a fill is subjected to an amplified shaking. :shear force
The shear force between the top and the Mass = m, —> A
second blocks‘is giveq by‘l‘:1 =mA,. Si.nce Mass =m, I l > A
the acceleration varies in the vertical
direction, the shear force at lower Mass=m, | |_’ A
elevations is calculated by summation % A

Fig. 7.8 Modified method of seismic coefficient

k k
(Shear force), = > m,A = Z(m;g)i,
i=1 i=1 8

7 K, =K, x1.8 | Local seismic Ky

........... activity
where g stands for the gravitational K,=K,x14
acceleration, m,g 1s th‘c wcight‘ of‘a """"""""" K,=K,x10 High _ 0.18
block and A /g=K, is the seismic Intermediate 0.16

coefficient relevant for the ith block. It~ Ky : seismic coefficient at base Low 0.13
is evident that 4, is different from the
base acceleration, 4,. The use of
different values of K, = A /g in the vertical direction is
called the modified method of scismic coefficient (I&F5E
FEi).

Fig. 7.9 Modified seismic coefficient in rockfill dam design

Minimum factor
of safety

Figure 7.9 is an example idea of the modified seismic
coefficients which is currently practiced for a seismic design
of rockfill dams. Figure 7.10 is an example analysis on
seismic limit equilibrium in which the critical slip plane is
detected. In addition to this, consideration on a surface slip
is necessary (Fig. 7.11).

Fig. 7.10 Secismic analysis on earthdam
by using limit equilibrium analysis

Fig. 7.11 Shallow slip failure

KW=>strength of soft soil

I _

| E Downward gradient of 1/30
Fig. 7.12 Unrealistically ' .

predicted failure of level soft
ground : : ' ' S

Fig. 7.13 Gentle slope of super river dike in Tokyo



The upstream slope of a fill dam is more gentle than the downstream slope. This is because the upstream
soil is submerged in water and is heavier, generating a greater seismic inertia force. Moreover, the
buoyancy force reduces the effective stress in the upstream side and makes the shear strength smaller.

Possible development of excess pore water pressure and decrease in effective stress are important as well
(Chap. 17).

One of the most ironical examples of the seismic coefficient method of analysis is that it predicts an
overall failure of soft level subsoil (Fig. 7.12), although a level ground is unlikely to fail. This problem
occurs because the method assumes a static one-way earthquake load despite that it is cyclic in reality. A
symmetric loading in positive and negative directions does not accumulate deformation in a level
subsoil. This shortcoming became a problem when a super river dike was designed in Tokyo (Fig. 7.13).
The super rever dike has a slope gradient of merely 1/30 and buildings were placed on it. Hence, seismic
stability of the dike slope was considered essentially important and a stability analysis was conducted.
Since the dike was underlain by soft alluvial clay, the calculated factor of safety was less than unity in
spite of the gentle slope. This case implies the importance of assessment of residual displacement by
using, for example, the method in Sect. 12.1.



L 7.3 Vertical Motion

Conventionally, the horizontal motion has been attracting more A\
attention than the vertical component. There are two reasons for ' '
this. First, any facility has some resistance against the vertical
motion. The inertia force in the vertical downward direction
increases the static force by, for instance, 20-50%. This increased
load is often still within the static safety margin. Most failures in
masonry structures are caused by the horizontal inertia force !
(Fig. 7.14).

Fig. 7.14 Collapse of adobe house

When a slope stability is maintained by the frictional law (Fig. in Bam. Iran. in 2003

7.15), the normal and the tangential reactions, N and S, are
KW

N =(1£K, )W cos6 — K,W sinf and
S=(1£K,)W sinf+K,W cos@ ,

where K and K, stand for the vertical and horizontal seismic coefficients,
respectively. Accordingly, the factor of safety, F, is derived as

Fig. 7.15 Stability of block
resting on frictional slope

. u(1+ K, - K, tan6)

" (1£K,))tan6+ K,
( y t Table 7.1 Maximum earthquake motion

data (National Research Institute of Earth

in which tes th fficient of friction. : . :
in which 4 denotes the coefficient of friction Science and Disaster Prevention, 1995)

Although 1+ K does not vary substantially with K, R
within a realistic range of variation, an increase in | Sites Acceleration (Gal=cm/s ™)

K, directly reduces the factor of safety. Once the NS EW Up-Down
stability is lost, the block in Fig. 7.15 starts to slide
down-slope and its displacement is (may be?) |Kobe meteorological

calculated by solving its cquation of motion. observatory * 818 617 332
Kobe port const. office 502 205 283
In the example above, the increase in the normal |NTT Kobe building (B3F) 331 153 169

force (N) directly increases the frictional resistance | New Kobe station 530 267 @ 344
(UN). From the soil-mechanic viewpoint, this means | Kobe port 8th pier ° 683 394 334
that the slope is dry or under drained conditions. Takatori station 635 553 175
Conversely when the slope is undrained, which is | Nishi Akashi station 397 381 319
more realistic under rapid loading, the increase in N | Factory in Amagasaki 321 472 311
is transferred to excess pore water pressure. Hence,
the effective stress and consequently the frictional Velocity (kine=cm/s)
resistance do not change. The factor of safety is
then given by Univ. Kobe 55.1 31.0 332
Fukushima, Osaka 31.0 29.8 9.6
UN, o u Chihaya-Akasaka 52 49 2.5

s (1xK)tan+KkK,’

a Recorded at the top of a small hill.
Again the horizontal inertia force, K, reduces the b Recorded upon a quay structure, not on soil.
factor of safety.

Empirically it is known that the vertical acceleration is weaker than the horizontal acceleration. Table
7.1 compares the maximum acceleration in vertical and horizontal directions recorded during the major
carthquake in Kobe (1995). Generally, the vertical acceleration is half of the horizontal acceleration.



& 7.4 Direction of Seismic Inertia Force in Design

In many cases the seismic inertia force for design has been applied in the horizontal direction because
the vertical acceleration in the observed records is weaker than the horizontal component. It might be
interesting, however, to make a brief discussion on the appropriate direction of the design inertia force. It
should be borne in mind that the following discussion is not very practical because the existing design
values of seismic coefficient have been determined on the basis of the idea of horizontal inertia force,

whether the idea is appropriate or not.

Figure 7.16 illustrates a situation in which a rigid body of weight =
W is resting on a frictional slope. The inclination of the slope is 0,
while the frictional angle between the slope floor and the rigid body
is ¢. Note that the inertia force of KW is inclined by an angle of o
from the horizontal direction. It is aimed at in what follows to detect
a particular o that minimizes the calculated factor of safety.

The factor of safety, F, is calculated as the ratio of the frictional resistance and the driving force

(Normal foce) x tang _ {W cos@ — KW sin(0 + o)} tan¢

F =
’ Driving force W sin@ + KW cos(0 + &)
_ {cos6 - K sin(0+ )} tan¢ (73)
~ sin@+K cos(6 +a) '
The minimum factor of safety for varying « is detected by
OF  —K cos(0+a){sin@+ K cos(6+a)}+ K sin(0 +a){cos@ — K sin(19+(:rc)}t 6=0
—= = > ang =0.
dot {sin@+ K cos(0+ )}
Accordingly,
. > Fo
sina =K and cosa =~1- K> for K<I _Tsmin__
F(a=0)
as is practiced commonly. 1.1
P Y 10 K=0.1
The minimum factor of safety, F ., is obtained by . :;“Kjo”?— 4—T4 “
substituting this special @ in (7.3) 0.9 |_o—— ————
08 KZUJ .
cos@ — K{sin@ coso +cosO sina} K=0.7
$.1min = - . tan‘p 0.7 —4—_——"-—-“'—#\
sin@ + K{cos@ cosa —sin@ sina} Incieism ig —n\ 4
0 kI 1-Kk? o . 0.6
=c056‘ K{\,] K 51n9+KC059}tan¢ 0 5 10 15 20 25 30
sin+ K{1-K* cos6~ K sin6) 6 (degree)
WCOSQ e sm9 | Fig. 7.17 Slgmf_"lct'cmcc_ofmclmcd
tan¢. (7.4) seismic inertia force

\/1 K?sin® + K cos
The conventional factor of safety, on the other hand, is derived by substituting & = 0 in (7.3);

_ cosf — K sin@

tan¢o. 7.5
 sin@+ K cosh ¢ (7:5)

Fig. 7.16 Inclined direction
of inertia force



Finally, the significance of the inclined inertia force is illustrated by using the ratio of (7.4) and (7.5), see
Fig. 7.17. It is found that the inclined direction of the inertia force reduces the calculated factor of safety
to some extent. It is not very important, however, unless the employed seismic coefficient, K, is very
large.
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