Chapter 11

Stress—Strain Models

Buddhism statue in Sukhothai, Thailand.

Sukhothai was the capital of the first Thai kingdom within the present territory of Thailand. Buddhism
flourished in this capital. Sukhothai Kingdom reached its peak in late thirteenth Century under the reign
of King Ramkhamhaeng. After him, however, Sukhothai declined quickly and came under control of
Ayutthaya Dynasty in late fourteenth Century.



LH) 11.1 Hyperbolic and Ramberg—Osgood Stress—Strain Models

Stress—strain relationship of soil is characterized by the rigidity when strain is small as well as the shear
strength at large strains, which is the upper bound of the stress level. This fundamental nature of soil
behavior has often been modeled by a hyperbolic curve (Fig. 11.1); refer to Kondner (1963) together
with Kondner and Zelasko (1963).
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It is possible to model a cyclic stress—strain curve by a hyperbola as well. This model is used for
dynamic analyses in the time domain. In case of an analysis on a one-dimensional (level) ground
subjected to horizontal shaking,
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The hyperbolic equation (11.1) models the skeleton curve BOA in Fig. 11.2. The skeleton curve is the
one that passes through the ends of hysteresis loop with a variety of strain amplitude +y, (Fig. 11.2).
Equation (11.2) gives a formula for secant modulus, G, varying with the strain amplitude,

G _ T/Y 1 (112)
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The hysteresis loop, A=B=A in Fig. 11.2, is often modeled by enlarging the skeleton curve two times
(Masing rule: Masing, 1926);

for A=—B and

where yp =-7, and 7y =—7, as shown by (11.1). The damping ratio is obtained by calculating W and



AW (area of loop):
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Figure 11.3 demonstrates the relationship of G/G_ . and & with the strain amplitude. It should be noted
that the reference strain is the strain amplitude at which G/G_, = 0.5. The damping ratio at a very large
strain amplitude approaches 2/ = 0.637, which is much larger than what is reported by experiments
(Chap. 10). Thus, the hyperbolic model should not be used in a large-strain range. Although its idea is
clear, the hyperbolic model cannot freely adjust the shape of curves. Hence, experimental results cannot
be fully considered. This problem is avoided in an equivalent-linear approach (Sect. 9.10) by using a

model by Hardin and Drnevich (1972):
ampine rati = Maxi ampine ratio at laree strai .G/
Damping ratio, 2 = Maximum damping ratio at large strain X (1 /Gma\)

in which G/G,,. ata given strain amplitude is derived from (11.2).
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Fig. 11.4 Variation of skeleton curve with o Fig. 11.5 Variation of skeleton curve with changing r.

The Ramberg-Osgood model is another kind of idea that reproduces the one-dimensional stress—strain
behavior in the course of cyclic shear. Jennings (1964) used this model in terms of force and displacement.
This text, however, describes the skeleton curve of this model by means of stress and strain:

Y i{uo{i]r_l} (11.7)
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in which a subscript *y” means characteristic values, while o and r are soil parameters to be determined
by soil testing. Figures 11.4 and 11.5 illustrate the variation of curves by (11.7) with changing parameters:

The major features of this model as compared with the hyperbolic model are as what follows.



1. There is no upper bound in shear stress; i.e., lim 7 is infinite. Therefore, shear strength is not
y—ee

considered. As an alternative, soil parameters in the model are adjusted to make shear stress at 1%
strain, for example, equal to an appropriate value.

2. Since there are three parameters, there is more freedom to take into account the complex soil
behavior; for example, shear modulus at small strain, damping ratio at large strain, and shear stress
at large strain.

3. Equation (11.7) helps calculate the strain value from a given value of stress. Shear stress, conversely,
cannot be directly calculated from strain. This may make a nonlinear analysis more time consuming
because stress determination needs iteration.

Both hyperbolic and Ramberg-Osgood models are intended to be used for a single-degree-of-freedom
situation. Therefore, horizontal shaking of a level ground is their major target. Extension to a multi-
dimensional situation needs more elaborate modeling,



LL) 11.2 Dilatancy of Sand Subjected to Cyclic Drained Shear

Deformation of soil is characterized by dilatancy, which is the volume change induced by shear deformation
(Sect. 1.6). Under cyclic loading, the volume change occurs as contraction, which means subsidence of
ground surface after an earthquake event (Sect. 17.11). It will be shown later that the volume contraction
in drained condition is equivalent with the development of excess pore water pressure in undrained
conditions (Sect. 18.1). This is the cause of liquefaction and extensive damage.

Figure 11.6 illustrates an example of a drained cyclic shear test with a constant amplitude of strain
conducted by a torsion shear apparatus (Sect. 18.8). The density of the tested sand was medium (relative
density = 56%). It is first observed that the stress amplitude increases as the number of cyclic loading
increases (see Fig. 10.6 as well). This implies that stiffness of soil increases with the progress of drained
cyclic loading. Second, the net volumetric strain is contractive, accumulating toward 5% or more,
although dilatant behavior is still observed when the shear strain exceeds 0.7%. Figure 11.7 illustrates
more detailed variation of volumetric strain in one cycle in which both contraction and dilation occur in
different phases of deformation.
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Contraction is positive.

Fig. 11.8 Volume change of very loose sand (Dr =
24% ) (Shahnazari and Towhata, 2002)

Figure 11.8 indicates the volume contraction of looser sand. Although the consolidation stress and strain
amplitude are identical with the data in Fig. 11.6, the accumulation of volume change occurred faster.



As mentioned in Sect. 1.6, the dilatant behavior of sand has been investigated by many people by using
the so-called stress-dilatancy relationship:

i, = K(— de, ]+ constant (11.8)
o dy,

in which &, designates the volumetric strain (positive in compression). Positive and negative dilatancy
is reproduced in accordance with positive and negative values of de, /dy,. Moreover, the present
section employs ¥, which is the plastic (irrecoverable) component of shear strain. The stress dilatancy
relationship of sand undergoing cyclic loading was studied by Pradhan et al. (1989) and later by Hinokio
et al. (2001). The present study, in contrast, attempts to indicate the stress-dilatancy behavior of sand
subjected to more number of cycles.
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sa. From these diagrams, the following points may be made:

1. Although the density of sand affects the range of mobilized (activated) stress level, the range of
dilatancy ratio, —de,; /dy, , is not much affected.



2. There is an approximate linearity in the stress—dilatancy relationship.
—dée,, /dy, jumps upon the initiation of unloading as reported by Pradhan et al. (1989).

4. The first cycle of loading exhibits greater values of ‘—dsml/d}fp , which imply greater tendency for

volume contraction.

5. Immediately after the onset of unloading (change of loading direction), —de,,, /dy, exhibits volume
contraction. This tendency increases as the number of loading cycles increases.

6. Conversely towards the end of loading (before unloading), —de,,, /dy, shows greater values (more

dilatancy), making the width of stress—dilatancy loop smaller; for definition of “width”, see the
figures.

Volume contraction as a consequence of cyclic shear results not only in ground subsidence but also in
lateral contraction. In a horizontal ground where lateral strain is confined to zero, the potential contraction
in the horizontal direction causes reduction of lateral earth pressure. Figure 11.11 is an experimental
evidence of this phenomenon, which was obtained by torsion shear tests. This finding implies reduction
of lateral earth pressure coefficient at rest (K, ).



LL 11.3 Theory of Elastoplasticity

Hyperbolic and Ramberg—Osgood models in Sect. 11.1 presented relationships between shear stress and
strain, which are useful in dynamic analyses on horizontal ground. Since only one component of stress
and one component of strain are therein studied, however, those models cannot be applied to two- or
three-dimensional analyses in which many components of stress and strain are involved.

The elastoplastic modeling is one of the widely employed approaches to multi-dimensional modeling in
which an increment of strain, de, induced by stress increments is decomposed into elastic and plastic
components;

: Stress o e
de =de® +de? (11.9) : : Yielding
Elastic and plastic ¢

strain increments

>

where the prefix of “e” and the prefix of “p” designate
clastic and plastic components, respectively. In the

clastoplastic terminology, the elastic component is the Elastic compo-
one which is recovered upon removal of the loaded nent only
stress increments, while the plastic component remains Strain

unchanged (irreversible) upon unloading and reloading
(Fig. 11.12). The elastic strain increments are calculated
by a conventional elasticity framework. In a three-
dimensional case, the isotropic theory of elasticity states

Fig. 11.12 Definition of elastic and plastic
strain components
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in which £ is the Young's modulus (modulus of elasticity), v is the Poisson ratio, and E/ {2(l+ v)} I
often called the shear modulus, G. In case that stress—strain relationship is nonlinear, these soil parameters
are defined by tangent values and change with the magnitudes of stress components, void ratio, and
possibly other soil parameters.

The theory of plasticity prefers to use the tensor way of designation for stress and strain. The relationships
between the tensor designation and the engineering designation (11.10) are given by

{81 1 822 833 812 821 823 832 831 813 }

= {Su g_v_v 83,1 yn/2 y;_v /2 }/\_/2 }{_v:. /2 ’},:,r /2 '}/_X/Z} * (1 1.1 1)
{O-I 1 0-22 0-33 O-I 2 0-21 0-23 0-32 O-SI 613}
= {GH o, 0, T, T, T, T, T, ra}. (11.12)

By using the tensor designations, the theory of plasticity (Hill, 1983) expresses increments of plastic
strain as



dej = hi df  j=123) (11.13)
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4 . |
The theory of plasticity has several hypotheses. First, the _
plastic deformation occurs only when the yield function, SO
/. increases. In other words, plastic deformation occurs Current stress

only after yielding (Fig. 11.12) and no plastic deformation
occurs when the current stress level is lower than the
previous maximum value. In the extreme case where de-
formation is large close to failure, the yield function be-
comes similar to a failure criterion (Sect. 1.5).
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Second, the ratio of components in a plastic strain increment
(11.13) is independent of the magnitude and direction of
stress increment. In other words, the orientation of the

Fig. 11.13 Schematic illustration of
plastic strain increments
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widely observed in soil testing —de,/dy Effective stress o

determines the ratio of shear and
volumetric strains and therefore is
a kind of flow rule (Fig. 11.14).

Fig. 11.14 Use of stress-dilatancy relationship as flow
rule of plasticity

Some theories employ g that is equal to f(associated flow rule). In this situation, the vector of plastic
strain increment is normal to the yield locus (Fig. 11.13). This feature is called normality. On the
contrary, the nonassociated flow rule employs different fand g functions.

The magnitude of the plastic strain increment vector is determined by the increment of the yield
function, df = (Jf/do;; Jdo;. in (11.13).

g‘s

Principal stresses (Sect. 1.3) play a major role in plasticity theory. The requirement of objectivity states
that the ground deformation as calculated by the plasticity theory has to be independent of the choice of
coordinate directions (x-y-z system or x'-y’-z" system). Therefore, 4, g, and f functions in (11.13) are
functions of principal stresses that are independent of the coordinate system. In other words, they are
functions of stress invariants such as
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Effective stress components are used
in the above expression because soil
behavior is governed not by the total o,
stress but by the effective stress. The
third hypothesis of plasticity theory is
called coaxiality, which states that the ¢, i
principal axes of stress and plastic strain o,
increments are parallel to each other
(Fig. 11.15).
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The use of principal stresses or stress invariants in functions 4, g, and f causes one significant problem in
application of plasticity theory to cyclic stress history. Figure 11.16 compares two kinds of shear stress
history: OABC and OABD. Since the principal stress formulation cannot recognize the different direction
of shear stress after B, continued soft behavior in BC and elastic reloading in BD cannot be reproduced.
This problem is significant in the popular P'-g formulation [!” = (O'l’ +05 + ()';);"3 and g =07 - O';] as

well.
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Fig. 11.17 Development of plastic shear strain under continuous rotation of principal stress axes

It is physically possible that principal stress axes rotate significantly while maintaining the magnitudes
of o, 05, and o5 constant. Since f, g, and A functions are held constant under constant values of
principal stresses, the theory of plasticity does not give plastic stress increments; df = 0in (11.13). In
reality, on the contrary, such stress components as 7, can still vary, and changes corresponding strain
components (7, for example). Consequently, plastic strain of ¥}, can develop (Ishihara and Towhata,
1983). Figure 11.17 illustrates the development

of shear strains, (8\_. - eh)! 2 and y,,,, undergoing cyclic rotation of principal stress axes while maintaining
0, — 05 constant. Figure 11.18 shows vectors of strain increments along another circular stress path. As
the stress state approached failure in the third cycle, the vector became greater and more perpendicular

to the circular stress path. Thus, the strain increment vector became overwhelmed by plastic components
that were coaxial with the principal stress.

Consequently, it is reasonable to state that clastoplasticity theory for, in particular, complex cyclic
loading should be formulated with special provisions for stress axes rotation; simple use of stress
invariants is not appropriate. An example of such a provision is the use of stress difference tensor,
0, —0,*, in which o, * stands for the stress state at the beginning of unloading (Point A in Fig.



11.16). This kind of modeling produces plasticity mechanism even when the stress level decreases from
the previous maximum value (inside the yield locus in the classical sense) as schematically illustrated in

Fig. 11.19. Mroz et al. (1978) developed such a theory.
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LL 11.4 Dilatancy under Cyclic Loading

Dilatancy is a phenomenon of volume change caused by shear deformation of discrete material (Sects.
1.2 and 1.6). In earthquake engineering practice, volume contraction due to dilatancy (negative dilatancy)
is important because it stands for ground subsidence induced by strong shaking. Dilatancy plays an
extremely important role in liquefaction analysis (Chap. 2) as well, because the major cause of liquefaction
and large ground deformation is the development of high pore water pressure caused by dilatancy (Sect.
18.1).
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Ya + C48d

where deg, is the increment of volumetric strain per cycle of strain amplitude ¥, . If cyclic loading occurs
in a drained manner (dry sand for example), this & is equal to the real volume compression. If loading
is undrained as is the case of liquefaction, this potential volume contraction is converted to the decrease
in effective stress under constant volume by

do’ = K(de, —de,), (11.15)

where &, is the volumetric strain that does occur in reality. Note that &€, = 0 under perfectly undrained
conditions. Moreover, K is called bulk modulus of soil and is equivalent with //m, (m, being volume
compressibility in (1.12)) in consolidation theory. The determination of soil parameters in (11.14)
requires cyclic drained loading on undisturbed soil specimens.

The other approach to modeling of dilatancy is that of excess pore water pressure that develops during



undrained cyclic loading. Apparently, this approach is related with liquefaction tests on sand. Figure
11.22 (Ishihara and Towhata, 1982) indicates a modeled relationship between decrease in effective
stress (increase in pore water pressure) and cyclic change in shear stress. This stress path model consists
of three parts: under loading (increase of shear stress), unloading (decrease of shear stress), and that near
perfect liquefaction.

Both approaches as described above concern one-dimensional cyclic loading (case of horizontal ground
subjected to one direction, EW or NS, of shaking). For more complicated situations, those models have
to be significantly revised, or more complicated models such as stress—dilatancy approach of plasticity
(Sects. 1.6 and 11.3) for volume change or energy correlation of pore water pressure (Sect. 20.8-20.10)
are employed.



LL) 11.5 Multi-Nonlinear Spring Model

Figure 11.23 illustrates an example of multi—
nonlinear spring model for a two-dimensional
situation in which simultancous loading of
(O’V —O'h)/2 and 7, associated with

Multi-anelastic-spring model

Tzx ‘ Yzx/2

/

External torce F
causing displacement u

0
i (0z-0x)12

(Ez-Ex)/2

continuous rotation of principal stress axes is ~ Anelastic spring
taken into account (Towhata and Ishihara,
1985). The big arrow in the figure stands for
the above-mentioned shear stress components
and its variation induces the displacement of

. . . F=[tc&-0m]
the point of action at the center. This o
displacement stands for the shear strain of soil; / u=[f€§-j;j’2]

(8‘, - £, )/2 and 7y, /2. Note that the ratio of
two stress components (direction of the arrow)
indicates the orientation of principal stresses.
When this orientation rotates, the direction of
the arrow changes and component springs are subjected to nonlinear deformation. Consequently, plastic
deformation is produced. This model was combined with the energy correlation of excess pore water
pressure (Sects. 20.8-20.10) to reproduce the undrained cyclic behavior of loose sand. It was applied by
[ai et al. (1992a,b) to develop a seismic design code of harbor structures.

Fig. 11.23 Multi-spring model for two-dimensional
shear deformation

The relationship between the nature of springs and the reproduced soil properties are as what follows. In
an ideal case where the number of springs is infinite, the shear modulus of soil at small strain, G, , and
the spring modulus at small deformation, k

direction of /2 in Fig. 11.23;

d@, are related to each other by supposing a loading in the

max

G = Jjﬁ:zkmx{ws[ﬂ —gj} 46 =k, .. (11.16)

When the deformation of springs is extremely large, all the springs develop their full strength; F, d6.
Accordingly, the magnitude of shear strength of modeled soil is given by

Shear strength of soil = EE Fy 005[9 - gj do=4rF,. (1L 17)

These simple calculations assumed that all the springs have identical properties of k. and F;. By
changing these parameters with the direction of springs, €, it is possible to model anisotropic soil

properties.

X

Since a two-dimensional condition has two independent shear stress components such as (Sz —€, ) /2 and
Y.. or ¥, and ¥, the two-dimensional model illustrated in Fig. 11.23 is useful. In a three-dimensional
condition, there are five independent shear stresses (six stresses minus mean effective stress) and its
modeling by a multi-spring model is not easy. Simple expansion of the circle in the figure to a three-
dimensional sphere is not sufficient because a sphere can handle only three degrees of freedom. Nishimura
and Towhata (2004) solved this problem by allocating many circle models on the surface of a sphere;
two degrees of freedom from a circle and three more degrees from the sphere.

It seems promising to extend the stress—dilatancy relationship (Fig. 11.14) to a multi-dimensional
conditions. This goal may be achieved by employing the generalized shear stress of 7=
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\‘JE(G’I —06,07, )(O’ij —Sijcrm) and the generalized shear strain of y _\'|3 [eij 5 ][eg 3 J In

these expressions, 7 and j are 1, 2, or 3, while SU. stands for the Kronecker’s delta;
6U=1ifi:j and 6ij=0ifi¢j.

Moreover, o, = (0'1’ +05 +0} ) / 3 designates the effective mean principal stress, and €, is the volumetric

strain. Note that the above definitions of 7 and y follow the tensor abbreviation;

AB, =Y AB, and, in particular, 7,7, =Y > 7,T,
- ~ -

The problem lying in the stress—dilatancy formulation is that no volumetric strain occurs if cyclic
loading occurs with a constant value of y; if dy =0, de, has to be zero in order to avoid an infinite
value of de, /dy.

The bowl model was proposed by Fukutake and Matsuoka (1989) with a scope to predict volume
contraction of sand undergoing multi-dimensional cyclic shear. For illustration, this section studics a
situation of Fig. 11.24 where soil is sheared by two components of shear stress: 7, and 7. The
associating shear strains, y, and y , are substituted in the dilatancy model in Fig. 11.25 where a
bowl-like curved surface stands for the relationship between volume change and shear strain. The
concave shape stands for the fact that volume expands when shear strain is large. See its similarity with
the experimental curve in Fig. 11.8.

>
7y
Y
T d
y an yy Downward translation
with accumulation of
ﬂ strain path
T, and
X X Yx Volume contraction
81«’
Fig. 11.24 Soil subjected to two- Fig. 11.25 Conceptual illustration of bowl
dimensional shear model of dilatancy

Since the volume of soil further continues to contract with the number of shear cycles, the bowl surface
moves down in Fig. 11.25, thus representing the accumulated volumetric contraction during cyclic
loading. This downward translation is a function of the shear strain path;

Length of shear strain path = _[[(d}fx)2 + (d}f_‘,)2 ]



& 11.6 Discrete Element Analysis

Although the finite element analysis has been proved to be a powerful tool to calculate deformation of a
continuous medium, there have been different attempts that consider materials discontinuous. This
attempt is appropriate for such situations as post-failure behavior of rock slopes in which blocks of
breached rock move and collide independently (Cundall, 1971; Kawai and Takeuchi, 1981).

Deformation analysis on an assembly of circular or spherical objects started in 1950s (Deresievicz,
1958a,b). Since sand consists of grains, this approach is attractive; particularly being so when displacement
is large. Hence, a method of analysis called distinct element analysis or discrete element analysis (DEM)
has been developed in which particles move and collide with each other (Cundall and Strack, 1979).
However, the limited capacity of computers has not allowed to analyze behavior of real individual grains
in either two-dimensional or three-dimensional manners; the num-
ber of real grains is too many for any computer memory. Hence,
the existing DEM works in a two-dimensional manner on imag- = (] —-n/ 4)“’ :
inary grains, which are much bigger than real grains. The two-
dimensional analysis employs void ratio, which is smaller than
the well-known void ratio range in real sandy deposit. For example,
a regular packing of round grains in Fig. 11.26 has void ratio of
1-m/4=0.273.

Fig. 11.26 Regular packing of

two-dimensional circular grains
Contact Shear Friction
force force

Void volume

Displacement

I

Grain-to-grain
distance

Friction

Fig. 11.27 Contact mechanism Fig. 11.28 Contact mechanismin  Fig. 11.29 Grains turning
in normal direction shear direction around corner

In DEM, the grain-to-grain interaction is modeled by nonlinear springs and dashpots, which are illustrated
in Figs. 11.27 and 11.28. When the grain-to-grain distance is short, a particle contact occurs, and a
normal mechanism (Fig. 11.27) is activated to resist against compression. At the same time, a shear
resistant mechanism (Fig. 11.28) is generated that stands for friction between grains. The magnitude of
friction in Fig. 11.28 varies with the extent of contact force in Fig. 11.27. DEM analysis is more
advantageous than FEM when displacement and deformation are large. For example, DEM can calculate
grain movements that turn around a corner of sinking foundation (Fig. 11.29), while such an analysis is
very difficult in FEM.

In a dynamic analysis, the grain-to-grain distance has to be examined for pairs of extremely many
particles at every time increment. To make ease this procedure, most DEM analyses employ circular or
spherical grains. Moreover, previous DEM assumed only such two types of mechanisms as compression
and shear at contact points. This idea is reasonable when the real contact occurs at a single point. If the
real contact occurs by a plane or two points, the transfer of moment becomes important. Iwashita and
Oda (1998) installed bending moment mechanism at contacts of imaginary spherical particles.



For an application to geotechnical carthquake problems, Kanatani et al. (2001) combined FEM and
DEM in which FEM was applied to a more continuous soil deposit, while DEM to an accumulation of
big concrete picces. Furthermore, Hakuno and Tarumi (1988) as well as Nakase et al. (1998) showed
how to calculate excess pore water pressure and seepage flow in a water-saturated model. Figure 11.30
illustrates an example calculation of liquefaction-induced deformation in a 30g centrifuge test. The
number of spherical elements are 14,000 with the diameter of 0.4 mm. Shaking of 300 Gal with 2 Hz
was applied. It is seen in this figure that the subsidence was terminated after some subsidence at which
the buoyancy and gravity forces achieved equilibrium. Note that the force equilibrium after some
displacement can be reproduced by FEM only if a large-displacement formulation is employed.

A three-dimensional DEM analysis is very interesting but evidently difficult because of the heavy
computation load. Harada and Gotoh (2006) conducted this type of analysis on the transportation of
river bed grains, taking simply into account the water effects. They employed 9,350 grains.

(a) Initial configuration prior to shaking.

v iEe o

Fig. 11.30 DEM calculation on subsidence of embankment into liquefied subsoil
(Honda and Towhata, 2006)
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Chapter 12

Application of
Seismic Inertia Force

The five-storeyed Buddhism pagoda in Horyu-ji Temple (%F4%<F), Nara, Japan. This temple, inclusive of
this pagoda, was first constructed in A.D. 607. It is said that the original temple was destroyed by fire in
670 and reconstructed later. There is a recent archaeological finding that supports this story. Whether
this story of fire is true or not, Horyu-ji is the world oldest wooden building,.



7 12.1 Calculation of Earthquake-Induced Displacement

In the recent times, except those caused by soil liquefaction, there has been few failure of dam due to
carthquakes. An important issue, therefore, is the prevention of unallowable deformation of a dam
embankment. This need has led to a study on the residual displacement of a soil body that remains after
the end of shaking.

Newmark (1965) proposed an analogy between the seismic slope movement and the motion of a rigid
block on a frictional slope (Fig. 12.1). When the rigid block of mass “m” is subjected to a cyclic base
acceleration parallel to the floor, an inertia force of Kmg is loaded on. Note that K is a function of time.
Accordingly, (1) the block starts to move downwards when the exciting force plus the gravity effects
exceed the frictional resistance, and (2) it decelerates its velocity when the friction exceeds the cyclic
plus the gravity forces. The equation of motion of the rigid block is given by

j;;l =g(sina+K—-pu cosa)=g(K—Kcr) (12.1)

in which « is the slope angle and u the frictional coefficient. Under a preearthquake static condition,
the factor of safety is given by F, =pu/tana. The downward motion starts when K exceeds
K. = u cosa —sina. The upward motion is ignored for conservatism (% 4xffll> % z J7) in many practical
studies, although it is possible to start when negative K exceeds —(pt cosa +sina).

Kmg :
47/' — 2

: < o ——>»
v d*uldr* >0 3
- a ' ' | d%ufdr* <o|

dufdt

SlideHistK.fig

—————-K " ——
or

SlideHistV.fig

Fig. 12.1 Newmark s analogy of sliding z
%]
rigid block of frictional floor S

Since the Newmark analogy relies on shear
failure mechanism, no elastic component is SlideHistD. fig
taken into account. Figure 12.2 illustrates the [ [ '
initiation and termination of slip movement.
First, the movement starts when K exceeds
K_, making the acceleration greater than zero

and velocity increases with time. This situation Time
continues until K becomes less than K after

Displacement

Fig. 12.2 Initiation and termination of

which d?u/dr* becomes negative and velocity sliding movement in Newmark analogy
decreases. As shown in the time history of

displacement, the displacement continues to
increase without fluctuation and ceases to increase any more when the velocity becomes zero.
An example analysis is presented below by using a harmonic excitation;

K=K, sinor. (12.2)

Although this K is similar to the static inertia force employed in conventional seismic designs (Sect. 7.1),
it is different in a sense that this K changes with time. Hence, K is equivalent with a base acceleration.



The motion starts at ¢, = arcsin(K_/K ) @ at which K = K_. By substituting (12.2) in (12.1) and
integrating with time,

o st —cosan) (o -an). (123

The end of sliding, 7 =1,, is detected by making K /K
the right-hand side of (12.3) equal to zero 10
(velocity = 0). The solution for this is obtained
by Newtonian iterative method;
X =X — F(x)[{dF(x,)/dx}; with the initial 0
assessment of wr, = 1.5 . Finally by integrating
(12.3) once more with time from 7, to t,, the
development of displacement per cycle, denoted 1 ;

er Newmark EndSlide. fg

K ;’K —10

max <r

A End of sliding

’ 2
Vv : Sliding starts
-5 | at K=Kcr.

by U,, is calculated. See Fig. 12.3 for the duration 0.0 0.5 1.0 1.5 2.0
time of sliding and Fig. 12.4 for U,. Note that wi/m

sliding starts carly and lasts for a longer time Fig. 12.3 Duration time of sliding under
when K value is greater. Consequently, the different intensity of inertia force

magnitude of sliding displacement is greater as well.

Exercise: Study the effects of shaking frequency on the residual displacement per cycle and per second
by using Fig. 12.4 and Table 12.1.

A typical result is illustrated in Fig. 12.5 where frequency was varied 5 times over a range of the
static factor of safety. Evidently, the higher shaking frequency causes significantly less magnitude of
residual displacement. This implies that such an earthquake input motion with high acceleration but
high frequency is not necessarily harmful to structures.

In practice, the rigid block in Fig. 12.1 is a replacement of a sliding soil mass, while the frictional floor
is equivalent with a slip plane with g =tan¢.

Since the Newmark method was originally intended for a dam analysis, it basically concerns with a good
compacted material. Therefore, it does not pay attention to excess pore water pressure development and
the consequent loss of resistance.

(sz )/(gK ) _ Conceptual calculation of Newmark sliding block analogy
S0 Newmark slide.fig Bas1c frequency and 5- lecs h1ghcr frcqucncy

‘No upward dlsplacement 1S < | | | L Ncwmalkbrcq ﬁg
40 - considered. | : Z Basic frequency
30 _UI is the displacement E i

- per cycle. S
20 P / g |

I I

10 © /J E.i - 5-times higher

i .2 | frequency

i ;
0 2 4 6 8 0 A [ O e |
K ./ K, 10 1.1 12 13 14 15 16 1.7 18

Static factor of safety, Fy

Fig. 12.4 Residual displacement per cycle Fig. 12.5 Effects of shaking frequency on residual
predicted by Newmark analysis displacement as calculated by Newmark analogy



& 12.2 Correlation Between Residual Displacement, Base Acceleration and Base Velocity

It should be recalled that one of the essences of geotechnical earthquake damage is the displacement
which remains after an earthquake. This displacement is called the residual or permanent displacement.
To study this aspect, the data in Fig. 12.4 is tabulated in Table 12.1.

Table 12.1 Relationship between
intensity of dynamic inertia force Ui sccond

. . OK 1 second
ar'ld accumulation of residual S 0 wea T period of gK Disp/sec. -
displacement per cycle 705 wo | shaking er =——T=1.0 sec.| Vmax.fig
. 1.0 A .2 sec. 1.0 4—=—=-T=0.5 sec.
(see Fig. 12.2) ——T=0.2 sec. T=0.2 sec
0.8 | {===T-0.1 sec. 0.8 ——-T=(]:I st:c:
Kmax/Kcr szl/chr 0.6 Disp/sec. ) 0.6
- Kmax.fig
1.0 0.00 o4 04
2.0 2.53 0.2 0.2
3.0 7.11 0.0 0.0
4.0 12.36 0 2 4 6 8 10 0 300 600 900 1200 1500
5.0 17.94 K‘““";K er Vmax”( er (cm/s)
6.0 23.70 Fig. 12.6 Correlation between Fig. 12.7 Correlation between
7.0 29.57 residual displacement and residual displacement and
8.0 35.52 intensity of base acceleration intensity of base velocity
9.0 41.53
U second
10.0 47.57 ;T . em/s unit
T Kmax"0.25%Vmax*0.75.
Because U, above is a residual displacement per cycle, it does 1.0 Kmax?0.25*Vmax"0.75.fig
not carry much practical sense. It seems better to use the
residual displacement per second, which is derived as U, .4 0.8
= U, xfrequency. In reality, what is reported as the residual 0.6
displacement (of foundations and slopes) is equal to U,x T=1.0 so
frequencyX (Duration time of strong earthquake motion). 0.4 L -‘T=0‘ 5 :;ec'
. ) . i 0.2 —T=0.2 sec.
Figures 12.6 and 12.7 plot U, _../(gK.,) against the intensity ’ ——=T=0.1 scc
of base acceleration (K, ; Fig. 12.6) and the amplitude of 0.0 T
velocity at base (V,,. =gK,../@; Fig. 12.7). Although the 0 100 200 300 400 500

residual displacement increases with these two typical . 3/
carthquake mlz)tion parameters, there is not seen a good ztlljique Honca Vo Ko
correlation. This is the reason why there is yet no agreement
about the suitable earthquake intensity parameter to be used
in practice.

Fig. 12.8 Correlation between
residual displacement and
combined effects of base
acceleration and velocity

Since the correlation in terms of velocity in Fig. 12.7 is more
promising than that of K, it seems reasonable that seismic damage estimation is better carried out by

max?

1 3
velocity than the maximum acceleration. To further improve this, a new parameter of K 4V, 4 was

max max

attempted in Fig. 12.8. Its correlation with the residual displacement per second appears reliable.

Ohmachi et al. (1990) proposed an idea of sliding response spectrum that indicates the power of a real
carthquake motion to cause a sliding block displacement. The residual displacement after the whole
carthquake changed with the slope angle and the frictional coefficient of the floor (¢ and u in Sect.
12.1).



LL 12.3 Relationship Between Seismic Coefficient and maximum Acceleration During Earthquakes

The seismic coefficient, K, that is applied in a static manner in design (Sect. 7.1) and the magnitude of
acceleration, 4, , during earthquakes are not equivalent to each other in reality in spite of the d"Alembert
principle. Surface acceleration with the maximum value of 4, =980 x 0.7 Gal is not so destructive as

K =0.7. This is because the duration of acceleration is limited and may not give structures time to move
significantly, while the static seismic inertia force with K = 0.7 is hypothesized to last forever in design.

Noda et al. (1975) analyzed past earthquake damages in quay walls at harbors. Limit equilibrium
analyses with a static seismic inertia force gave the critical K values, denoted as K, which were required
to induce failure. The real values of K was probably greater than K at sites with damage, while K was
less than K when there was no damage. Thus, a range of possible K values were obtained.

At the same time, they estimated the maximum horizontal acceleration, 4., by using the acceleration
records obtained at nearby sites, or by using fault models, attenuation with the epicentral distance, and
response analysis on local subsoil models.

By combining these all, the range of realistic K was plotted against 4, (Fig. 12.9). An empirical

formula of K = (%x/g)l"'3/3 was proposed. Figure 12.9 was a unique attempt to physically correlate K
and 4, . Note that there are many uncertainties in this study, probably including the determination of

appropriate soil strength in the limit equilibrium analysis.
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Fig. 12.9 Correlation between maximum acceleration and seismic coefficient
(drawn after Noda ct al. 1975)



& 12.4 Brief Analysis on Seismic Coefficient Equivalent to Maximum Acceleration

An attempt was made to determine the pseudo-static seismic coefficient that is equivalent with a given
seismic loading. Figure 12.10 shows a simple time history of acceleration in which the wave shape is
rectangular with a period of 7" and the amplitude equal to A ,.. When a rigid mass resting on a level
frictional floor (Fig. 12.11) is subjected to this acceleration history, the equation of motion is given by

T/2
d- T ax B
m d; =mA,, —umg for 0<7< =
d*u T . 0 ¢
m dr? = _m'Amax — Hmg for "y <t<T, A
e
which is easily integrated with the initial conditions of u . T ) ‘
= du/dt = 0 at ¢ = 0. Consequently, it is found that the Fig. 12.10 Rectangular history of
motion stops at 1=A_ T/(A,, +Hg) in which g stands acceleration
for the gravitational acceleration. By assuming that the . ”’
mass does not move back towards the original position m 1 - frictional

after this time, the residual displacement per one cycle of

o . s7; coefficient
shaking is derived; :

‘ iAnax ’

Fig. 12.11 Rigid mass resting on frictional

' = Iql'lm.‘;Tz(1&"”3"Z _ Jug) .
O T 4 A+ H18)

u

level floor, which is subjected to motion

When the hypothetical earthquake has N cycles of shaking, g, g/ [ N= 1
the ultimate residual displacement at the time of N7 is derived 3.0 - N Eq. K value.fig
as ’
2.5
NA. T? - 2.0
Uy, = Amax (Amax ﬂg) ' (]24)
4(Ama\ +Ju'g) 1.5
1.0
Second, a static seismic force of Kmg is applied to the mass 0.5
in Fig. 12.11. By integrating the equation of motion with this '
L . : 0.0
constant (pseudostatic) force, the residual displacement, u, .., 0 1 2 3 4 5 6
att =NT is easily derived as Amaxf”@l g)

Fig. 12.12 Equivalent seismic coefficient

(K —p)g(NT)*

2

Hipertia =

(12.5)

By equating (12.4) and (12.5), a value of K = K, that is equivalent with the acceleration in Fig. 12.10 is
determined;

| Kq here is equivalent with the given
Ay (Am“" — ]] acceleration history in the sense that both
Keq —1+ M8 \ HS . (12.6) develops the same magnitude of residual
u 5 N( Anax + ]] | displacement after the same time.
M8

Figure 12.12 plots K, thus calculated against A, /ug. Note that K, decreases as N increases. The

proportionality to (4, /g)"” as proposed by Noda et al. (1975) (Sect. 12.3) agrees with the case of N = 2.
When more than two cycles occur, even a smaller K, is appropriate.



LL) 12.5 Seismic Earth Pressure on Retaining Wall

Calculation of seismic earth pressure on a retaining wall is one of the important applications of the
pseudo-static (quasi-static) seismic inertial force. Figure 12.13 indicates the real failure of a wall. Not
only lateral sliding but also rotation occurs in reality.

Fig. 12.14 Prof. N.Mononobe Fig. 12.15 Dr. S.Okabe
around 1930 in 1926

Mononobe-Okabe pressure is a

pressure at limit equilibrium. Do
not confuse it with the real earth
pressure during earthquake but
without failure.

Fig. 12.13 Overturning of retaining wall
during 1995 Kobe earthquake

(near Hanshin Ishiyagawa Station) e i U .
Mononobe and Okabe (Figs. 12.14 and 12.15)
developed a theory of seismic earth pressure by
modifying the Coulomb theory on (static) active earth Hs
pressure (Mononobe, 1924, Okabe, 1924, 1929; L

surface

Mononobe and Matsuo, 1929). The Mononobe-Okabe

theory is still in practical use all over the world. '

Pae
Figurc 12.16 illustrates the situation in which Fig. 12.16 Failure mechanism assumed
Mononobe-Okabe theory was developed. A soil wedge in Mononobe—QOkabe formula

(< &%) behind a rigid wall is subjected to inertial
forces 1n both horizontal and vertical directions. Since

an active pressure is going to be studied, the horizontal inertia force is oriented w? v W
outwards. The rear face of the wall is inclined by J, having a frictional angle
of & with soil. KW
. . . N : : KW
The gravity force, W, is a static force that is oriented vertically and acting on
the soil wedge. Under seismic conditions, inertia forces of K W and K, W are W = arctan K,

added to W, composing a total load of #*, which is inclined by v (Fig. 1-K

12.17). Fig. 12.17 Total force

.. . . acting on soil wedge
By examining Figs. 12.16 and 12.17, it is found that Mononobe—Okabe theory

is different from Coulomb’s active-carth-pressure theory (Fig. 12.18) only in
the direction of force W*. Hence, the Mononobe-Okabe’s Fig. 12.16 is rotated by y to obtain Fig. 12.19
where the force of W* is vertical. By applying the original Coulomb theory to Fig. 12.19, the seismic



active earth pressure, P, *, is derived.

The original Coulomb active pressure was given by

P yH? cos*(¢ - B) i (12.7)

cos(d + 1 1]J sin(¢ + 8)sin(¢—i) |
g (5 ﬁ){l ,\IJCOS(5+}3)(;L)S(-" —ﬁ)}

and the direction of the slip plane by

; . 1 sin(¢p + &) cos(B +6)
col(@, —i)=—tan(B—i+ 0o I , 12.8
O =)= —tan(B =i+ +¢)+(;05;()3—1'+5+¢:)NI cos(B —i)sin(¢ —1i) (12.8)

where /1 is the length of the face of the wall. For detailed derivation of (12.7) and (12.8), refer to
Appendix 1.

Backfill surface

==

wgpenspsn| Final

position
of wall

Test 81 Active failure wedge

Fig. 12.18 Coulomb
coordinate before rotation

Fig. 12.19 Mononobe—

QOkabe coordinate after
rotation

Fig. 12.20 Displacement of backfill
soil in centrifuge tests on retaining
wall (after Bolton and Steedman, 1985)

After rotating Fig. 12.16, symbols in (12.7) are replaced by new ones with “*”

-

P =st w52(¢_ﬁ*)
> 2

? (12.9)
. : ~
cos(5+ﬁ*) 1+ lll S‘“(‘P"‘f)ﬂlll(ql_; )*
wcos(3+ﬁ )cos(:. -B )

® —
inwhich B*=B+vy, i*=i+y,0,%*=0_,+y, H*=H,andy* = il Y= - &, ¥ . Consequently,

W cosy
b = ﬂ: L-%) Uofu(gb(_ﬁ_;y) : ki (12.10)
2 [ sin(@+ &)sin(¢p—i —y
cosyreos(8+ B+ W){] ’ \'l cos(0 + B +y)cos(i — ﬁ)}

and the direction of slip plane as measured from the horizontal direction is given by



1 sin(¢ + &) cos(B+y +6)
cos(B—i+8+¢) \‘Il cos(B —i)sin(¢p—i—y)

col(B,, —i)=—tan(B—i+5+¢)+ (12.11)

The Mononobe-Okabe seismic active pressure acts at the elevation of 1/3 from the bottom. Recent
studies recommend, however, 0.45 to 2/3 (e.g., Seed and Whitman, 1970). Figure 12.20 supports a
planar slip plane as assumed by the Mononobe-Okabe theory.

Problems and further developments of the Mononobe-Okabe theory will be described in Sect. 12.8.



& 12.6 Shaking Model Test on Seismic Earth Pressure

The Mononobe-Okabe theory Orientation of positive

is simply a product of inertia force acceleration

theoretical consideration and - > Cushiﬂm*
does not have an experimental g ° | :

back ground. Further, there are
strange attempts in which the

theory is applied to situation . *

without failure despite that the /:]:;.ing load cells

theory is a limit equilibrium - _

one which is valid only Hinge Shaking table

when soil fails. With these
in mind, shaking table tests
were conducted on seismic
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Fig. 12.21 Model of retaining wall
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and can rotate around its Point A A
base. The backfill is made 9 B _ _ _ _ C _
of air-dry (X#z) dense ) 3 4 5 6 7 8

Toyoura sand that has 90% Time (second)

relative density. Fig. 12.22 Time history of shaking and carth pressure
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Figure 12.22 manifests the time history of base shaking and the dynamic increment of earth pressure.
When the shaking was weak in the initial stage, the shaking and the earth pressure are 180° out of phase
(¥ZfH : point A). This means that the induced inertia force moved the wall outwards more than the
backfill soil, leading to reduced earth pressure. This situation starts to change at around point B and, in
the latest stage of point C undergoing stronger shaking, the acceleration and the earth pressure are in
phase with each other ([Fl{iz#f). This is because the increased magnitude of shaking increased the strain
amplitude, and accordingly reduced the stiffness of backfill soil (nonlinearity). Thus the soil was made
casier to move than the wall. Consequently, the inertia force in the outward direction made “collision”



between soil and wall, resulting in the increased earth pressure.

Figures 12.23 and 12.24 show the relationship between the displacement of wall and the earth pressure
increment during shaking. Before failure (Fig. 12.23), the earth pressure takes the maximum value when
the wall moves towards the soil (positive displacement : passive state). Since the Mononobe-Okabe
theory is concerned with the active state, this maximum ecarth pressure is out of scope of the theory.
After failure (Fig. 12.24), in contrast, there is another peak earth pressure in the active state that agrees
with the idea of the theory. It is noteworthy, therefore, that the Mononobe—Okabe theory assumes the
wall to be more stable than the backfill soil.

Nakamura (2005) carried out centrifugal model tests (Sect. 24.11) under 30G field on dynamic earth
pressure on a gravity-type retaining wall. The data

hereinafter is presented in the equivalent prototype Earth pressure (kN/m?)
scale. Constructed models were first shaken under 00 10 20 30 40 50
relatively weak intensity of motion prior to strong "R | 306 centrifugal tests |

excitation. Figure 12.25 shows the distribution of earth 5 _ \ by S.Nakamura
pressure after this preliminary shaking. It is seen that e

the carth pressure had decreased to be close to the £ 4

static active earth pressure probably because of minor :g .
displacement of the wall. g 66— *. Kostate
Strong shaking with the maximum acceleration of 600 81 = I
Gal occurred thereinafter. Figure 12.26 illustrates the 10 Initial earth pressure.fig

relationship between the inertia force and the dynamic Intensity of preliminary shaking
earth pressure when harmonic shaking occurred with 2 2[5]8 ((:::Il i 2‘;’3 gl‘:

600 Gal at maximum and 2 Hz. The inertial force is

taken positive when it is oriented outwards in the active
direction, and the dynamic earth pressure stands for
the increment of earth pressure after the initial pressure.
It is shown in Fig. 12.26 that the dynamic earth pressure increment is negative when the inertial force
takes the maximum value in the active direction. Thus, it may be reasonable to take the design seismic
pressure equal to the initial pressure, which is equal to the static active pressure (Fig. 12.25). Furthermore
in Fig. 12.27, the point of application of the earth pressure during shaking is around 25% of the wall
height as shown by the data when the inertial force takes the maximum active value.

Fig. 12.25 Earth pressure distribution prior to
strong shaking (after Nakamura, 2005)
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Fig. 12.26 Relationship between inertia force and ~ Fig. 12.27 Time change of the point of application
carth pressure under harmonic shaking of earth pressure during harmonic shaking



(600 Gal and 2 Hz) (data by Nakamura, 2005) (600 Gal and 2 Hz) (data by Nakamura, 2005)

The same points can be made in Figs. 12.28 and 12.29 in which an irregular shaking of maximum 600
Gal and the predominant period of 2 Hz are employed. Thus, in contrast to the implication of Mononobe-
Okabe pseudo-static theory, the static active earth pressure may be employed as the design dynamic
carth pressure.
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Fig. 12.28 Relationship between inertia force and Fig. 12.29 Time change of the point of application
carth pressure under irregular shaking of earth pressure during irregular shaking
(600 Gal and 2 Hz) (data by Nakamura, 2005) (600 Gal and 2 Hz) (data by Nakamura, 2005)



& 12.7 Comparison of Static and Seismic Active Earth Pressures

It is intended here to compare the seismic active earth pressure
as derived by the Mononobe—Okabe formula with the Coulomb ¥ = arctan K,
static active earth pressure. Fig. 12.30 illustrates the concerned
situation in which the face of a wall is smooth (6 =0) and
vertical (8 =0), while the surface of the backfill is level
(i =0). The Mononobe—QOkabe seismic active earth pressure
is then given by

Fe=—5M", (12.12) Fig. 12.30 Illustration of studied retaining
= wall model

where the earth pressure coefficient, K, is given by Mononobe-Okabe pressure. fig

=%
E Ez 5___._.:‘_'Stayic passive earth pressure, K,,
$ 2 4 Static active earth pressure, K i
ol - a
K = COoS (gb - !p') (12.13) s Probably no failure occurs in
ae = : 2 ) 2 °f | the backfill under small K . |
isingsin(¢ —y) =S h
cosyil+ | N = <[ O: Seed-Whitman approximation
\ cosy | . Mononobe-Okabe ,
Ky o Pl =
The static active earth pressure, on the other hand, is 0 0.2 0.4 0.6 0.8
given by Seismic coefficient, K,
Fig. 12.31 Comparison of Mononobe—Okabe
K. seismic active earth pressure coefficient with
P = Sa gy (12.14) . prossiT
2 static earth pressure coefficients
wherein
K, = 1@2(450—%). (12.15)

Moreover, the coefficients of static earth pressure at rest (K;,) and of passive earth pressure, K, =

tan’ [45" + g), are going to be studied.

Figure 12.31 compares three kinds of static earth pressure coefficients, K, K, and K, with K, which
varies with the seismic coefficient of K. The friction angle of 40° is assumed in the backfill soil. In Fig.

12.31, following points are made:

1. K is less than K that is around 0.5 for normally consolidated soils.

2. K, increases from K, as K| increases. However, K, 1s still less than K, when K| is relatively small.

3. Since small values of K, cannot induce a state of limit equilibrium, the calculated K, with small K| is
not meaningful. Hence, a dashed curve is employed in the figure.

Seed and Whitman (1970) used ¢ =35° and proposed an approximate expression of
Kae:Ka+%Kh. (12.16)

This approximation is shown also in Fig. 12.31 by a symbol of []. Its matching with the original
Mononobe-Okabe formula is good in spite of different friction angles of 35° and 40° employed.



LL) 12.8 Modified Mononobe-Okabe Theory

Since 1990s, there has been a strong trend to increase the design seismic coefficient due to experiences
of strong earthquake motions (see Fig. 14.20) and importance of structures. Consequently, the seismic
coefficient is increasing from former levels of, for example, K, = 0.20 to stronger levels such as 0.5 or
more. Another issue is the use of friction angle at the residual deformation, ¢, 4, rather than that at the
peak strength, @,.,.. As Fig. 12.32 illustrates conceptually, the residual friction angle is smaller than the
peak friction angle and gives a conservative (higher)

cz.u'th pressure coefficient. For experimental data, see Shear Peak strength

Fig. 1.15. stress

Those greater values of K, were substituted in (12.10)

and (12.11) to calculate the seismic earth pressure

coefficient, K, and the direction of the slip plane,

0., .. The direction of the slip plane is measured from Shear strain

the horizontal direction; see (12.17) and (12.18). Fig. 12.32 Schematic illustration of peak
and residual shear strength

Residual strength

©” [2K) covle B ) T (12.17)
cosy cos(d 1 fl sin(¢ +6)sin(¢ —i —y) }
ycos(6+ B+ W){ +N’C<>S(5+ﬁ+w)cos(i—)8)

1 llisin(¢+5)cos(ﬁ+lp‘+5) .

cot(@, . —i)=—tan(f—-i+O0+¢)+ 12.18
(Ousc =) (B 9) cos(f—i+5+¢) ‘\‘|I cos(f —i)sin(¢ —i —y) ( )
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In this calculation, ¥ = arclan{Kh /(11— K‘,)}, while K = 0 and
B=i=06=0 is assumed for simplicity. The calculated results
in Figs. 12.33 and 12.34 employed ¢, and ¢ being

50° and 30° respectively. Accordingly,

residual / Sl [p p[anc

1. The carth pressurc that was increased by the residual strength
is conservative but makes retaining walls more costly,

2. When K, exceed 0.6, the earth pressure with @, 4., becomes
infinite and design calculation is made impossible, and

3. This problem is accompanied by the direction of slip plane,
which becomes nearly horizontal (Fig. 12.35).

Ultimate direction
of slip plane

Fig. 12.35 Negative orientation of slip
plane calculated by conventional
Mononobe—Okabe theory

To overcome this problem and to assess a reasonable magnitude of seismic ecarth pressure under strong
design earthquake and ¢ Koseki et al. (1998) proposed a modified Mononobe—Okabe theory. They

residual »



conducted 1-G shaking tests on a model of a gravity-type quay wall with dense sandy backfill (Toyoura
sand of relative density = 80%). Shaking was conducted by using the motion that was recorded at Kobe
Meteorological Observatory in 1995. This shaking was repeated several times by increasing the amplitude.

— - &mumx- -

BUYRRIRBZR BARRR (eE) | RERR T
AR (R FaE1 1F1A280
TERI1 11288 500gal #7

Fig. 12.36 Development of first slip plane Fig. 12.37 Development of second slip plane
after shaking with maximum acceleration after shaking with maximum acceleration
=513 Gal (Photo by K. Watanabe) =919 Gal (Photo by K. Watanabe)

Figure 12.36 illustrates the appearance of a model after shaking with the maximum acceleration of 513
Gal. The orientation of the developed slip plane was 54°. Shaking was further conducted on the same
model, while maintaining the first slip plane unchanged. After shaking at 919 Gal (Fig. 12.37), the
second slip plane developed in the direction of 46°. Consequently, the new earth pressure theory was
constructed as what follows:

1. The first failure mechanism (slip plane) is determined by @, under minor magnitude of seismic

coefficient (K, = 0.0 or 0.2 for design practice);
in case of ¢, =50° and K, = 0 together with f=i=6 =K, =0, for example, K, = 0.132 and
0., =70°.

2. Under stronger seismic loads (K, > 0), the seismic active earth pressure is produced by this mechanism
(6 =70°), but the friction angle along this plane is reduced to ¢@,.q,.- Because of this reduced
friction angle, the earth pressure is increased. Note that the friction angle in other parts of the backfill
is still kept at ¢, Figure 12.38 compares carth pressure coefficients obtained by the conventional
Mononobe-Okabe theory and this modified idea. The increased earth pressure is still less than the
pressure calculated by Mononobe-Okabe theory with @, qua-

RevMononobeOkabe3.fig

2.0 :
1.5 [b:q]rcsidual
L =30 deg. |
= 1.0
05 —Kac=0'53 1
" ’ at Iﬂ1=0.617_
* Calculation of modified seismic 0'%_0 02 04 06 08 10 12
carth pressure Ky,

Fig. 12.38 Comparison of conventional Mononobe—Okabe seismic earth pressure
and the pressure obtained by fixed slip plane under increasing K,

3. As Fig. 12.38 indicates, the modified theory and the conventional Mononobe—Okabe theory with
Ppea = S0° give the same results at K; = 0.617. This implies that the entire backfill is subject to

failure again. The conventional Mononobe-Okabe theory with ¢ ... =50° and K, = 0.617 gives

peak



0,.=43.6°

4. After K, = 0.617, the second failure mechanism plays a chief role in the direction of 6 =43.6°
together with @, 4, =30°. This feature is illustrated in Fig. 12.39.

The modified Mononobe-Okabe theory maintains 6

angle at a constant value while K| value increases. 20 _ RevMononobeOkabed.fig
This is in a good contrast with the conventional theory 0=0 i tual ¢=$ :=£_13'6 deg.
in which € decreases with increasing K, (Fig. 12.34). 15 ! =30 deg. | ol
Thus, the range of damage in Fig. 12.35 (H/Aan@) is Q 1.0 "0.-70 deg.
made smaller by the modified theory. This is a good - 00 residual heak
advantage because the need for soil improvement in 0.5 é—"‘", =50 deg.
the backfill is reduced. 0.0 —— '

00 02 04 06 08 10 1.2
Note that the earth pressure calculation in the modified Ky
theory depends on the initial determination of the slip Fig. 12.39 Secismic earth pressure activated
plane orientation. In the example above, this orientation after second development of slip plane

was determined at K, = 0. There is no definite reason,
however, to support this practice, and engineering
judgement is required in this respect.
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