New Railway Track Nykirke, Norway

CPTU combined with block sampling resulted in cost saving solutions for new Railway link Oslo to south Norway

Steinar Hermann and Tor Georg Jensen, NGI

New Railway Track Nykirke, Norway

Nykirke Railway Track New double track route

Results of standard soil boring with 54 mm composite piston sample

Nykirke Railway Track Solution proposed in tender documents

Results of CPTU; Nykirke Railway Track

Cone factors from Norwegian and UK soft clay test bed sites

$$N_{kt} = (q_t - \sigma_{vo})/s_{uCAUC}$$

 $N_{\Delta u} = (u_2 - u_o)/s_{uCAUc}$

Undrained shear strength from CAUC triaxial tests on Sherbrooke block samples

Undrained shear strength profile (s_{uA}), Nykirke Railway Track

Nykirke Railway Track, chosen solution

NOTES vertical progression (manually) (mechanic or electric) circulated at each cutting tool utting tools at every 120° (bottom diaphragm opened)

Sherbrooke block sampler

4.2a The drill rig used to operate the block sampler

4.2b Close up view of Sherbrooke block sampler

Block sampling with Sherbrooke sampler

Sampler is lowered into borehole

Sample as recovered

Spoil is gently removed by hand

Block sampling with Sherbrooke sampler

Complete sample prior to protection

sample initially protected by cling film, tin foil and tape, finally being waxed

Sample ready for transportation

Block sampling with Sherbrooke sampler

Results of CAUC tests on block and 54 mm piston samples; Nykirke Railway Track

Nykirke Railway Track

Case history Nykirke railway track

Upgraded shear strength profile resulted in possible change in technical solution

From stability viewpoint not neccessary with piles to rock

- Settlements could be taken care of by vertical drainage combined with preloading
- Total cost savings of about USD 1.2 mill or 25 % of total contract cost

Nykirke Railway Track Placement of prefabricated vertical drain

Nykirke Railway Track Placement of geotextile and 0.3 m gravel

Nykirke Railway Track Placement of preload rock fill

Nykirke Railway Track Measured pore pressures and settlement

Cone factors from Norwegian and UK soft clay test bed sites

$$N_{kt} = (q_t - \sigma_{vo})/s_{uCAUC}$$

$$N_{ke} = (q_t - u_2)/s_{uCAUC}$$

$$N_{\Delta u} = (u_2 - u_o)/s_{uCAUc}$$

Undrained shear strength from CAUC triaxial tests on Sherbrooke block samples

New Railway Track Nykirke, Norway

New Railway Track Nykirke, Norway

