CPT /CPTU

- What is a CPT/CPTU and what do we measure?
- Historical overview
- Role in todays soil investigations
 - onshore
 - offshore
- Equipments for testing
 - Deployment systems
 - Various CPT/CPTU equipments available
 - Data aquisition

TERMINOLOGY FOR CPT

TERMINOLOGY FOR CPTU AND WHAT DO WE MEASURE

In addition frequently measure inclination, i

Example CPTU profile from Holland

HISTORICAL BACKGROUND CPT

- 1932 First Dutch cone penetration tests (by hand)
- 1935 Delft Soil Mechanics Laboratory (DSML) performs CPT with 10 t manually operated rig
- 1948 Improved design of Dutch cone including conical mantle
- 1953 Measurement of friction sleeve added to mechanical cone
- 1948 DSML develops first electrical cone
- 1965 Fugro develops electrical friction cone

THE FUGRO ELECTRICAL FRICTION CONE (AFTER DE RUITER, 1971)

- 1 Conical point (10 cm²)
- 2 Load cell
- 3 Strain gauges
- 4 Friction sleeve
- 5 Adjustment ring
- 6 Waterproof bushing
- 7 Cable
- 8 Connection with rads

HISTORICAL BACKGROUND CPTU

- 1974 Janbu and Senneset (Norway) and Schmertmann (USA) penetrates conventional piezometer. Wissa et al. (USA) and Torstensson (Sweden) simultaneously piezoprobe
- 1980 Roy et al. (Canada) develops probe with combined measurement of cone resistance, sleeve friction and pore pressure
- 1986 Fugro (Holland) and McClelland (UK) simultaneously develop "triple element" piezocone. Campanella et al. (Canada) performs seismic piezocone tests

Example combined CPT and pore pressure probe Piezocone or CPTU

Examples measured CPTU parameters

Example: Measured CPTU Parameters

ROLE OF CPT/CPTU IN TODAYS SOIL INVESTIGATIONS

Onshore Scandinavia

- Used in large projects by knowledgeable clients
- Gradually taking over after the vane tests; results used for soil profiling and also to define parameters for foundation design
- However, the full potential is not yet used. Not all clients and consultants are aware of the advantages of the test

ROLE OF CPT/CPTU IN TODAYS SOIL INVESTIGATIONS

Offshore North Sea

- Since 1972 has dominated offshore soil investigations (> 50%)
- Used in most projects
- In some cases investigation consists of only CPTUs

Deployment of CPT/CPTU

Equipment now exists for pushing in cone penetrometers into soil for a large range of conditions

- on land
- offshore

Example CPT rigs

Geotech simple rig

CPT/CPTU on land

Modern truck mounted system (ConeTec/Gregg)

CPT/CPTU on land

Trackmounted system

(ConeTec/Gregg)

Standard CPT Rigs

20 Tonne Crawler

Non-Standard CPT Rigs

15 Tonne Rail Crawler

- Rapid investigative technique. Minimal set-up and test time per local No reinstatement required
- Optimises track possession time more effectively
- Mini-crawler with inclined rams for rail embankments
- No lifting required for mobilisation

Non-Standard CPT Rigs

1.5 Tonne Mini Crawler

- Suitable for restricted access (rubber tracked, low ground bearing pressure)
- Thrust capacity 20 tonnes
- •Reaction weight 1.5 tonnes (increased with ground anchors & water tanks)
- Suitable for Railway related work

Pagani small trackmounted CPT rig

Versatile Mobile Rams

Embankment CPT's

CPT/CPTU on land

Drill-rig system

(ConeTec)

Low headroom CPT -Inside buildings

(ConeTec/Gregg)

CPT in London Underground tunnel

Coson® 200 kN

- Take-over principle
- Time saving about 7 sec/m
- No loss of data at one meter intervals
- No dissipation effects interfering with pore water pressure measurements.

Front[|] *view*

Schematic overview of Autocoson system Coson Pick & place unit Turret for CPT rods Rod screw Subframe Clamps device

Side view

Top view

TOTAL CONE PUSH FORCES WITH AND WITHOUT MUD INJECTION (FROM JEFFERIES AND FUNEGÅRD, 1983)

In situ testing in offshore geotechnical investigations

Deployment platforms

- Jack up rigs
- Barges
- Survey ships
- Special soil drilling vessels

Investigations from jack-up platform

Deployment from vessels

Over the side or stern

Through the moonpool

In situ testing in offshore geotechnical investigations

Basically two modes of operation:

- Seabed mode
- Down-hole mode

In situ testing in offshore geotechnical investigations

Sea bottom rigs:

- Standard size rigs (e.g. 10 or 15 cm² cone penetrometers)
- Minirigs (1 to 5 cm² cone penetrometers)

Fugro's wheeldrive CPT system

Heavy duty rig 20 t, profiling to 45-50 m penetration possible

From brochure

Roson rig with one set of roller wheels

5 ton rig for pipeline investigations with standard size cones

From AP van den Berg brochure

CPT rig with acoustic telemetry

Light version:

- -weight < 3 tons
- -thrust capacity 1 ton
- -base area 2.25 m²
- -2 cm² -5 cm² cones

From Gardline brochure

Fugro's Seascout minirig

Example of light mini-rig for use in deep waters

Global, UK

Geo's combined CPT and Vibrocore seabed rig "GeoCeptor"

- •CPT and vibrocore in "one operation"
- CPT up to 10 m depth
- Soil sampling up to 6 m depth

GEO "CPT-ROV"

Weight: 200kg

Deployment depth: 3000m

Max penetration: 3 m

Cone dimensions:

10cm² 5cm²

Geo CPT-ROV

Mounting on ROV

- **▶** Power from ROV
- ► Interfaced to ROV.
 Using ROV umbilical cable for data transmission and control

Felttest Sola Golfbane

Soil stinger

New Norwegian system that can potentially be used for tests deployed from ROV

SOIL STINGER

Geotechnical rov tool

Transport dim: 1500 x 1800 x 1200 mm

Dry weight: 1000 kg Wet weight: 50 kg

Stinger Technology As

Down-hole insitu testing

Operation with umbilical, hydraulic cylinder pushes tool below bottom of borehole. Data aquisition through cable and real time display of test results. Depth limitation about 700 m.

Fugro's downhole XP system

Mud pressure to penetrate in situ tool. Memory based data aquisition

From Hawkins and Marcus(1998)

PROD: Horizontal Launch & Recovery

260m of drill tools in two carousels

Penetromet er

- Standard 10cm² CPT
- Full piezocone capability
 - Standard probing
 - Dissipation testing
- Real time data
- Full seabed redundancy
- Full spares kit

Example of downhole CPT showing soil disturbance due to drilling

Example of downhole CPTU showing little drilling disturbance

Seabed or down-hole testing?

Advantages of down-hole testing:

- Penetrations to 150 m or more
- Hard layers can be penetrated
- Possible to do combination of different types of in situ tests and/or sampling

Seabed or down-hole testing?

Advantages of seabed testing:

- Easier and quicker deployment
- Less expensive ships can be used
- Higher quality of tests due to no soil disturbance due to drilling

New alternative CPTU while drilling

Developed by Italian company SPG and Swedish company ENVI

- Cone penetrometer protrudes in front of drill bit while drilling in same way as a corer
- CPTU data stored in a memory unit
- Drilling parameters logged at same time

CPTU while drilling; principle

(From M.Sachetto, 2001)

DETAIL OF MEMOCONE AND THE CPTwd-BARREL BIT

Recovering device

and wire

CPTwd BARREL

CPTU while drilling

BIT

Full face bit -no coring

Result from CPTU while drilling

Result of CPTUWD – Bologna, Italy, 2005

CPT/CPTU MEASUREMENT SYSTEM

Depth measurement

Cone resistance/sleeve friction strain gauge load cells

Pore pressure - pressure sensors

Data acquisition

CPT/CPTU MEASUREMENT SYSTEM

Depth measurement

Cone resistance/sleeve friction strain gauge load cells

Pore pressure - pressure sensors

Data acquisition

EXAMPLE OF DEPTH REGISTRATION SYSTEM

EXAMPLE OF DEPTH REGISTRATION SYSTEM

CPT/CPTU MEASUREMENT SYSTEM

Depth measurement

Cone resistance/sleeve friction strain gauge load cells

Pore pressure - pressure sensors

Data acquisition

DESIGN OF CONE PENETROMETERS. (a) CONE RESISTANCE AND SLEEVE FRICTION LOAD CELLS IN COMPRESSION

DESIGN OG CONE PENETROMETERS. (b) CONE RESISTANCE LOAD CELL IN COMPRESSION AND SLEEVE FRICTION LOAD CELL IN TENSION

DESIGN OF CONE PENETROMETERS. (c) SUBSTRACTION TYPE CONE PENETROMETER.

Typical piezocone with two separate load cells for cone resistance and sleeve friction and a pressure transducer for pore pressure measurements

CPT/CPTU MEASUREMENT SYSTEM

Cone resistance/sleeve friction strain gauge load cells

Pore pressure - pressure sensors

- Data acquisition
 - Transmission via cable
 - Acoustic transmission
 - Storing data in memory mode

CPT/CPTU MEASUREMENT SYSTEM

GEOTECH'S SYSTEM WITH ACOUSTIC TRANSMISSION OF SIGNALS

GEOTECH'S SYSTEM WITH ACOUSTIC TRANSMISSION OF SIGNALS

Schematic overview Optocone® System

Productinfo.

Envi™ Memocone II CPT Probe

- Flexible cordless or with cable
- Measuring point resistance, local sleeve friction and pore pressure
- Easy storage of data
- Easy calibration of probe
- Fulfils highest
 ISSMFE class
- Used world-wide

Envi Memocone II

Envi™ Geoprinter 60
Drilling parameters, CPT data
collector and printer 22 channels

Programmable for a number of methods:

- CPTu sounding
- Tunnel grouthole probing
- Jet grouting
- Percussive drilling
- Penetration testing
- Diamond core drilling
- SPT Sounding
- Dynamic Testing
- Quality Control of Lime Columns
- Ram sounding

Wheather proof instrument

Easy to install on all drillrigs

Easy to adapt to all methods

History, Equipment etc

- Over last 50 years CPT/CPTU has developed into very efficient technology
- We now have very well developed equipment for testing onshore, nearshore, offshore

GEO "CPT-ROV"

CPT thrust unit

Weight: 110kg

Capacity: 15kN

Electronic unit

Weight: 30kg

Portable
Remotely
Operated
Drill

EXAMPLE OF DEPTH REGISTRATION SYSTEM

