# CPTU Derived Soil Engineering Parameters for CLAY

- 1. Key Aspects of Clay Soil Behavior
- 2. Important engineering design parameters
- Background and application of CPTU correlations for estimation of design parameters
- 4. Applied to Case Studies in follow-on lecture.



#### Recall - Basic Soil Behavior - CLAY



k<sub>v0</sub>

1-D Consolidation

#### **Key Aspects**:

- Compressibility (RR and CR)
- 2. Yield stress  $(\sigma'_{p})$
- 3. Coefficient of consolidation (c<sub>v</sub>)
- 4. Hydraulic conductivity (k<sub>v</sub>)
- 5. Horizontal stress ( $\sigma'_{h0}$  or  $K_0$ )

# $\int_{\mathbf{v}_0}^{\mathbf{v}_{v_0}} \log k_v$ $\int_{\mathbf{v}_0}^{\mathbf{v}_{v_0}} \sigma'_{h_0} = K_0 \sigma'_{v_0}$

For 1-D or geostatic stress conditions

#### **Most Important Parameter:**

Yield stress =  $\sigma'_{vy} \equiv \sigma'_{p} \equiv p'_{c}$ Also known as:

- Preconsolidation stress
- Maximum past pressure



#### Recall - Basic Soil Behavior - CLAY



#### **Undrained Shear Strength**

#### **Key Aspects**:

- Shear induced pore pressures
- 2. Effect of OCR
- 3. Anisotropy
- 4. Rate effects

#### **Most Important Parameter:**

Undrained shear strength =  $s_u$ 



# **General Aspects of CPTU Testing in Clay**

- 1. Penetration is generally undrained and therefore excess pore pressures will be generated.
- 2. Cone resistance and sleeve friction (if relevant) should be corrected using the measured pore pressures.
- 3. The measured pore pressures can also be used directly for interpretation in terms of soil design parameters.



#### Interpretation of CPTU data in clay

- 1. State Parameters = In situ state of stress and stress history
- 2. Strength parameters
- 3. Deformation characteristics
- 4. Flow and consolidation characteristics
- 5. In situ pore pressure

#### In Situ State Parameters

- 1. Soil Unit weight:  $\gamma_w$  for computation of in situ vertical effective stress ( $\sigma'_{v0}$ )
- 2. Stress history  $\sigma'_{p}$  and OCR =  $\sigma'_{p}/\sigma'_{v0}$
- 3. In situ horizontal effective stress  $\sigma'_{h0} = K_0 \sigma'_{v0}$



### **Estimation of Soil Unit Weight**





# **Estimation of Soil Unit Weight**



| Zone | Approximate Unit Weight (kN/m³) |
|------|---------------------------------|
| 1    | 17.5                            |
| 2    | 12.5                            |
| 3    | 17.5                            |
| 4    | 18.0                            |
| 5    | 18.0                            |
| 6    | 18.0                            |
| 7    | 18.5                            |
| 8    | 19.0                            |
| 9    | 19.5                            |
| 10   | 20.0                            |
| 11   | 20.5                            |
| 12   | 19.0                            |

[Robertson et al. 1986]



Note:  $1 \text{ kN/m}^3 \approx 6.36 \text{ pcf}$ 

# Stress History: OCR = $\sigma'_p/\sigma'_{v0}$

Estimation of Stress History (OCR or  $\sigma'_p$ ) can be based on:

- Direct correlation with CPTU data
- Pore pressure differential via dual element piezocone
- Indirect correlation via undrained shear strength



Wroth (1984), Mayne(1991) and others proposed theoretical basis (cavity expansion; critical state soil mechanics) for the following potential correlations between CPTU data and  $\sigma'_{\rm p}$  or OCR:

$$\sigma'_{p} = f(\Delta u_{1} \text{ or } \Delta u_{2})$$

$$\sigma'_{p} = f(q_{t} - \sigma_{v0})$$

$$\sigma'_{p} = f(q_{t} - u_{2})$$

OCR = 
$$f(B_q = \Delta u_2/(q_t - \sigma_{vo}))$$
  
OCR =  $f(Q_t = (q_t - \sigma_{vo})/\sigma'_{vo}))$   
OCR =  $f((q_t - u_2)/\sigma'_{vo})$ 

#### Most Common:

$$\sigma'_p = k(q_t - \sigma_{v0})$$

or

$$OCR = k[(q_t - \sigma_{v0})/\sigma'_{v0}]$$







Drammen plastic clay





Comprehensive study initially by Chen and Mayne (1996) with later updates (e.g., Mayne 2005):

$$\sigma'_{p} = 0.47(\Delta u_{1}) = 0.53(\Delta u_{2})$$

$$\sigma'_{p} = 0.33(q_{t} - \sigma_{v0})$$
 Most common

$$\sigma'_{p} = 0.60(q_{t} - u_{2})$$



<u>Note</u>: values listed above are from best fit regressions; there is a sizable range in all values, e.g., k ranges from 0.2 to 0.5 for  $\sigma'_{p}$  = k( $q_{t} - \sigma_{v0}$ )



# Example - CPTU Stress History Correlation

Boston Blue Clay Site – Newbury, MA.

σ'<sub>p</sub> values obtained from Constant Rate of Strain (CRS) Consolidation tests conducted on high quality Sherbrooke Block samples



Data from NGI Block Sample Database (Karlsrud et al. 2005)

- Laboratory tests conducted on high quality undisturbed block samples (e.g., Sherbrooke Block Sampler)  $\rightarrow$  sample quality can have a significant influence on  $\sigma'_p$
- Soft to medium stiff clays
   s<sub>u</sub>(CAUC) = 15 150 kPa; OCR = 1.2 6.3;
   I<sub>D</sub> = 10 50 %; S<sub>t</sub> = 3 200



# Importance of Sample Quality – Boston Blue Clay

#### Used 4 sampling methods

- 1. Poor: SPT sampler
- **2.** <u>Fair</u>: Standard 76 mm thin walled tube sampler (with free or fixed piston)
- 3. <u>Good</u>: Fixed piston sampler in mudded borehole using modified 76 mm diameter thin walled tube
- 4. **Best**: Sherbrooke Block Sampler







NGI Block Sample Database

$$OCR = f(B_q)$$



[Karlsrud et al. 2005]











From pore pressure data using dual element piezocone

PPD = 
$$(u_1 - u_2)/u_0$$



[Sully et al., 1988]

# Recall: K<sub>0</sub> – OCR Relationship for Clays



For simple case of loading followed by unloading, K<sub>0</sub> increases with increasing OCR such that:

$$K_{0,OC} = K_{0,NC}(OCR)^n$$



#### In Situ Horizontal Effective Stress

There are currently no reliable methods for determining the in situ horizontal effective stress,  $\sigma'_{h0} = K_0(\sigma'_{v0})$  from CPTU data

For approximate (preliminary) estimates consider correlations based on:

- OCR via CPTU correlations for OCR or s<sub>u</sub>
- Measured pore pressure difference



# **K<sub>0</sub>-OCR-PI** Relationship



Need values for Plasticity Index (PI) and OCR.

Determine OCR from 1) CPTU correlations or via 2) undrained shear strength correlation (next slide)



[Brooker and Ireland 1965]

#### **NGI** Relationship among OCR-s<sub>u</sub>/σ'<sub>v0</sub>-K<sub>0</sub>-PI





# **Estimate K**<sub>0</sub> from Dual Element Piezocone



### Recall: Shear Strength of Clays

For most design problems in clays (especially loading) the critical failure condition is undrained.

- 1. Undrained Shear strength  $s_u$  (=  $c_u$ )
- 2. Remolded undrained shear strength ( $s_{ur}$ ) or Sensitivity,  $S_t = s_u/s_{ur}$



Note: 1kPa = 20.9 psf

#### **Notes Regarding Undrained Shear Strength**

- 1. The undrained shear strength is not unique.
- 2. The in situ undrained shear strength depends on many factors with the most important being: mode of shear failure, soil anisotropy, strain rate and stress history.
- 3. Therefore s<sub>u</sub> required for analysis depends on the design problem.
- 4. Measured CPTU data are also influenced by such factors as anisotropy and rate effects.
- 5. The CPTU cannot directly measure s<sub>u</sub> and therefore CPTU interpretation of s<sub>u</sub> relies on a combination of theory and empirical correlations



# **Theoretical Interpretation CPTU in Clay**

- 1. Existing theories for interpretation of s<sub>u</sub> from CPTU data involve several simplifications and assumptions. Therefore existing theories must be "calibrated" against measured data
- 2. Most important to use realistic and reliable soil data from high quality tests conducted on high quality samples
- 3. At NGI key reference is to use  $s_u$  from Anisotropically consolidated triaxial compression (CAUC) tests conducted on high quality undisturbed samples. A secondary reference is to use the average  $s_u$ (ave) [or mobilized for stability problems] =  $1/3[s_u(CAUC) = s_u(DSS) + s_u(CAUE)]$



### **Undrained Shear Strength Anisotropy**











#### **Undrained Shear Strength from CPTU Data**

#### Theories for interpretation:

- 1. Bearing capacity
- 2. Cavity expansion
- 3. Strain path methods

All result in a relationship of the form:

$$q_t = N_c s_u + \sigma_0$$
, where  $\sigma_0$  could =  $\sigma_{v0}$ ,  $\sigma_{h0}$ ,  $\sigma_{m0}$ 

In practice most common to use:

$$q_t = N_{kt}s_u + \sigma_{v0}$$
, for which theoretically  $N_{kt} = 9$  to 18.



#### **Undrained Shear Strength from CPTU Data**

The empirical approaches available for interpretation of s<sub>u</sub> from CPT/CPTU data can be grouped under 3 main categories:

- 1. s<sub>u</sub> estimation using "total" cone resistance
- 2. s<sub>u</sub> estimation using "effective" cone resistance

3. s<sub>u</sub> estimation using excess pore pressure



#### Undrained Shear Strength from CPTU Data

$$s_u = q_{net}/N_{kt} = (q_t - \sigma_{v0})/N_{kt}$$
 | Most Common

$$s_u = \Delta u/N_{\Delta u} = (u_2 - u_0)/N_{\Delta u}$$
 Often used

$$s_u = q_e/N_{ke} = (q_t - u_2)/N_{ke}$$

Seldom used



Need empirical correlation factors  $N_{kt}$ ,  $N_{\Lambda u}$ , or  $N_{ke}$  factors as correlated to a specific measure of undrained shear strength, e.g., s<sub>..</sub>(CAUC) or s<sub>..</sub>(ave)



# **CPTU** s<sub>u</sub> Cone Factors

 $s_u(Lab) = s_u(ave) =$ 

 $1/3[s_u(CAUC) + s_u(DSS) + s_u(CAUE)]$ 



s<sub>u</sub>(CAUC)

Note:  $N_{kt}$  for  $s_u(CAUC) < N_{kt}$  for  $s_u(ave)$ 



[Aas et al.1986]

Update of CPTU  $s_u$  cone factors using NGI <u>high quality</u> block sample database. Derived cone factors as function: OCR, Sensitivity ( $S_t$ ) and Plasticity Index ( $I_p$ )

















#### CPTU s<sub>u</sub> Cone Factors – Karlsrud et al. (2005)





#### CPTU s<sub>u</sub> Cone Factors – Karlsrud et al. (2005)

Best fit regression lines to plotted data for s<sub>u</sub>(CAUC)

| Cone<br>Factor  | Sensitivity<br>S <sub>t</sub> | Regression Equation                   | Standard<br>Deviation |
|-----------------|-------------------------------|---------------------------------------|-----------------------|
| N <sub>kt</sub> | ≤15                           | 7.8 + 2.5logOCR + 0.082l <sub>p</sub> | 0.197                 |
|                 | > 15                          | 8.5 + 2.5logOCR                       |                       |
| $N_{\Delta u}$  | ≤ 15                          | 6.9 – 4.0logOCR + 0.07l <sub>p</sub>  | 0.128                 |
|                 | > 15                          | 9.8 – 4.5logOCR                       |                       |
| N <sub>ke</sub> | ≤ 15                          | 11.5 – 9.05Bq                         | 0.470                 |
|                 | > 15                          | 12.5 – 11.0Bq                         | 0.172                 |



Best relationship (statistically) =  $N_{\Delta u}$ . Note:  $N_{\Delta u}$  correlation uses direct measurement ( $u_2$ ) and does not require use of  $q_t$  which must be corrected for overburden stress in other correlations.

#### Updated NGI $N_{\Delta u, CAUC}$ Cone Factor for $S_t \le 15$



Plotted for Range  $OCR = 1 \text{ to } 10 \text{ and } I_p$ = 10 to 80

High = 12.5 @ OCR = 1 and 
$$I_p$$
 = 80

Low = 3.6 @ OCR = 10 and 
$$I_p = 10$$

[Karlsrud et al. 2005]



# s<sub>u</sub> from CPTU via CPTU-σ'<sub>p</sub> correlations

For a given element of soil, the preconsolidation stress  $\sigma'_p$  is essentially unique whereas  $s_u$  which is strongly dependent on method of measurement and is therefore not unique.

Alternative procedure to estimate  $s_u$  is first determine  $\sigma'_p$  (and hence OCR) from the CPTU data, then use established laboratory (e.g., CAUC, DSS) or in situ (e.g., FVT) relationships between  $s_u$  and  $\sigma'_p$  (or OCR) for a particular mode of  $s_u$  shear.

#### Examples:

SHANSEP Equation (Ladd 1991)  $s_u/\sigma'_{v0} = S(OCR)^m$ , with  $S = s_u/\sigma'_{v0}$  at OCR = 1 e.g.,  $s_u(DSS)/\sigma'_{v0} = 0.23(OCR)^{0.8}$ 



$$s_u(mob) = 0.22\sigma'_p$$
 Mesri (1975)

# Remoulded Undrained Shear Strength sur



Comparison between UUC triaxial test data on remolded samples with CPTU friction sleeve data for Offshore California site



[Quiros and Young 1988]

### Remoulded Undrained Shear Strength sur



Comparison of laboratory measurements of remolded undrained shear strength with sleeve friction from CPTU tests for Ormen Lange area offshore Norway.



[Kvalstad et al. 2004]

### Undrained Shear Strength Sensitivity, St



Relationship between Sensitivity and CPTU R<sub>f</sub> for two sites in Norway



[Rad and Lunne 1986]

#### **Deformation Parameters**

- 1. Constrained Modulus for 1-D compression, M
- 2. Undrained Young's Modulus, E<sub>u</sub>
- 3. Small strain shear modulus, G<sub>max</sub>

Two approaches for use of CPT/CPTU data to estimate deformation parameters:

- 1. Indirect methods that require an estimate of another parameter such as undrained shear strength  $s_u$ .
- 2. Direct methods that relate cone resistance directly to modulus.



#### Example of Direct Correlation between CPTU and G<sub>max</sub>



Mayne and Rix (1993)

Estimation of small strain shear modulus  $G_{max}$  for clays from CPT  $q_c$  data + estimate e.

Note:  $G_{max}$  is anisotropic + in the context of CPT/CPTU testing, better to measure directly down hole with seismic cone (=  $G_{vh}$ )



### **Consolidation and Hydraulic Conductivity**

Measurement: dissipation of penetration pore pressures during pause in penetration. Can be  $u_1$  or  $u_2$ . Ideally measure until  $\Delta u = 0$  but time depends on  $c_h$  and  $k_h$ .

#### **Derived Soil Properties:**

- 1. Coefficient of Consolidation, c<sub>h</sub>
- 2. Hydraulic Conductivity (= permeability), k<sub>h</sub>

Since the dissipation is radial,  $c_h$  and  $k_h$  are derived. Some clays can have highly anisotropic consolidation and flow parameters (e.g., varved clays) – need to use published anisotropy ratios to estimate  $k_v$  and  $c_v$ .



#### **CPTU Normalized Dissipation Curves**



Bothkennar, UK (= soft clay)
Dissipation Tests at 15 m
depth

Typically plot:

 $U = \Delta u/\Delta u_i$  as function t which for the  $u_2$  position =  $(u_2 - u_0)/(u_i - u_0)$ where

 $u_0$  = in situ pore pressure before penetration, and  $u_i$  =  $u_2$  at t = 0



# Theory for CPTU derived c<sub>h</sub> and k<sub>h</sub>

 $c_h$  Terzaghi Theory:  $c_v = (TH^2)/t$ 

Torstensson (1975, 1977) suggested use time at 50% dissipation and for CPTU geometry thus,

$$c_h = (T_{50}/t_{50})r^2$$

Hence for 10 cm<sup>2</sup> cone,  $c_h = 0.00153/t_{50}$  [m<sup>2</sup>/s]

 $k_h$  Terzaghi Theory:  $k_h = c_h \gamma_w m_h$ 

Determine c<sub>h</sub> from dissipation test + need estimate m<sub>h</sub> = coefficient of volume change, which can be correlated to q<sub>c</sub> or q<sub>t</sub>





# **Coefficient of Consolidation**

Houlsby and Teh (1988, 1991): Strain Path Theory and Finite Element Analysis

For  $u_1$  or  $u_2$  and 10 cm<sup>2</sup> or 15 cm<sup>2</sup> cones. Uses  $t_{50}$  + requires Rigidity Index,  $I_r = G/s_u$  [ $I_r$  tends to decrease with increasing OCR and  $I_p$ ]

$$c_h = (T^*_{50})r^2(I_r)^{1/2}/t_{50}$$
  
 $T^*_{50} = 0.118 \text{ for } u_1$   
 $= 0.245 \text{ for } u_2$ 





#### 350 300 250 $u_2$ (kPa) 200 150 un 100 50 500 2000 2500 3000 0 1000 1500 Time (s) 8.0 0.6 0.4 0.2 t<sub>50</sub> 0.0 10 100 1000 Time (s)

#### Example c<sub>h</sub> – Boston Blue Clay (Newbury, MA)

10 cm<sup>2</sup>, u<sub>2</sub> Piezocone

$$t_{50} = 1750 \text{ s}, a = 1.78 \text{ cm}$$

$$T^*_{50} = 0.245, I_r \approx 100$$

$$c_h = 0.0044 \text{ cm}^2/\text{s}$$

Note: if  $u_0$  unknown and cannot assume hydrostatic then must run full dissipation  $\rightarrow$  can be very time consuming.



### Recommendations - CPTU Derived Soil Engineering Parameters for CLAY

- Do not eliminate sampling and laboratory testing
- 2. Verify reliability of results and that undrained conditions prevail
- 3. With increasing experience modify correlations for local conditions

#### **Good CPTU Interpretation methods exist for:**

- Soil Unit Weight  $(\gamma_w)$
- Stress History: OCR or σ'<sub>p</sub>
- Undrained Shear Strength for s<sub>u</sub>(CAUC) and s<sub>u</sub>(ave)
- Small strain shear modulus (G<sub>max</sub>)
- Coefficient of Consolidation (c<sub>h</sub>)

#### **Approximate** estimates can be made from CPTU data for:

- In Situ horizontal effective stress (σ'<sub>h0</sub> or K<sub>0</sub>)
- 2. Remolded undrained shear strength (s<sub>ur</sub>) or Sensitivity (S<sub>t</sub>)
- 3. Hydraulic Conductivity (k<sub>h</sub>)

