CPT/CPTU Interpretation of Stratigraphy: Soil Layering and Soil Classification

- Stratigraphy Key signatures of soil layering from CPT/CPTU data
- 2. <u>Soil Classification</u> development and application of soil classification charts
- 3. Examples of results in different soil types.

Measured Data and Calculated Variables

1. Measured Data

most common = q_c, f_s, and u₂

2. Calculated Variables (for u₂ measurement):

- Corrected tip resistance: $q_t = q_c + u_2(1-a)$
- Excess pore pressure $\Delta u = u_2 u_0$
- Friction Ratio: $R_f = f_s/q_c$

- Normalized sleeve resistance: $F_r = f_s/(q_c \sigma_{vo})$
- Pore Pressure Parameter: $B_q = (u_2 u_o)/(q_t \sigma_{vo})$
- Normalized Excess Pore Pressure: U = (u₂ –u₀)/σ'_{vo}
- Normalized Corrected Tip Resistance: $Q_t = (q_t \sigma_{vo})/\sigma'_{vo}$

Stratigraphic Profiling

Excellent application for the CPT and especially the CPTU

Approach:

1.Reply on fundamentals of soil behavior, i.e., stiffness (e.g., dense sand vs. soft clay) and drainage (drained behavior during shear in sand vs. undrained behavior during shear in clay).

Stratigraphic Profiling

Key Signatures to look for in measured data, e.g.:

- Shape and magnitude of q_t profile e.g., high in dense sand, low in soft clay
- 2. Shape of u profile and magnitude, especially relative to equilibrium pore pressure profile e.g., high in soft clay, $\Delta u = 0$ in medium density sand
- 3. Magnitude of R_f relative to that of q_t e.g., if high and coupled with low q_t = soft clay.

Example CPT in Western Massachusetts

Inspect relative values of q_c , f_s and R_f

Loose

Sand

Med.

Dense

Sand

Clay (CVVC)

UNITS:

1 ksc

≈ 100 kPa

≈ 0.1 MPa

≈ 2000 psf

≈ 1 tsf

Example CPTU in Eastern Massachusetts

Boston Blue Clay

Stiff Clay Crust

SPT N = WOR (i.e., = 0)

Uniform Soft Clay

Linear increase in q_t and u_2 with depth

High u_2 relative to u_0

Example CPTU in NE Massachusetts

Example CPTU - Holland

Note:

- jump in R_f in Peat Layers
- low q_c , f_s but high u in Clay
- high q_c , f_s but low R_f in sand + u close to u_0
- apparent significant stratification in middle sand layer

[Zuidberg et al. 1982]

Example CPTU profiles in Venetian soils

Significant interbedding of soils from sands to silty clays

Example CPTU – Offshore Deep Water Site

Location of seabed anchors

Deep water site

CPTUs conducted at one anchor location

Deep water site – CPTUs at one anchor location

Deep water site – CPTUs at one anchor location

Example CPTU in Japanese volcanic soil

Example CPTU in Connecticut Valley Varved Clay (CVVC), Western MA

X-ray of fixed piston sample of Connecticut Valley Varved Clay (CVVC) – Amherst, MA

Silt = "summer" deposit Clay = "winter" deposit

Example CPTU in CVVC, Amherst, MA

Miniature Piezoprobe for high resolution profiling of thin soil layers

Projected tip area = 1.25 cm²

 $u_1(face), u_2, u_1(tip)$

Example Miniature Piezoprobe – CVVC Amherst, MA

- push at 2 cm/s
- sample at 64 Hz

Example Miniature Piezoprobe – CVVC Amherst, MA

Soil Classification from CPT/CPTU data

Methodology:

- 1. Quantify observations used to identify soil stratigraphy.
- 2. Empirically based, i.e., measured CPT/CPTU data are correlated with know soil profiles.
- 3. Early charts relied on direct use of reduced data, e.g., q_c or q_t and f_s or R_f.
- 4. Later charts make use of normalized parameters to account for increasing overburden stress with depth, e.g., Q_t, B_q.

CPT Soil Classification/Behavior Chart

Based on q_c and f_s from CPT

Measured CPTU pore pressure by location and soil type

Pore Pressure (via B_a) for soil Classification

Note: measured u is function of location – chart is for u₂ position. Hence, negative pore pressures can occur.

[Janbu and Senneset 1984]

Soil Behavior Type Classification Chart

Sand to silty sand

Silty clay to clay

Sand to clayey sand*

Soil Behavior Type Classification Chart

1. Sensitive, fine grained

3. Clays-clay to silty clay

grained 4. Silt mixtures clayey silt to silty clay

2. Organic soils-peats

5. Sand mixtures; silty sand to sand silty

6. Sands; clean sands to silty sands

7. Gravelly sand to sand

8. Very stiff sand to clayey sand

9. Very stiff fine grained

Example CPTU Soil Classification – Oslo Airport

Newbury BBC classification chart

= "crust"

= Soft, moderately sensitive Clay

= "Interbeddd silt, clay, sand

1. Sensitive, fine grained

Soil Behavior Type by Zone Number

- 2. Organic soils-peats
- 3. Clays-clay to silty clay
- 4. Silt mixtures clayey silt to silty clay
- 5. Sand mixtures; silty sand to sand silty
- 6. Sands; clean sands to silty sands
- 7. Gravelly sand to sand
- 8. Very stiff sand to clayey sand
- 9. Very stiff fine grained

Example of "Automated" Soil Identification Chart

Example of "Automated" Soil Identification Chart

Additional Measurements for better definition of soil type/behavior

Options include:

[Note: additional sensors covered in later topic]

- Short dissipation tests with CPTU
- Dual or Triple element (pore pressure) CPTU
- Seismic CPTU to get Shear Wave Velocity (V_s)
- Electrical conductivity (or resistivity) = relate to soil porosity, degree of saturation, relative density, leaching of quick clays

Nuclear density/Gamma Cone = density of soil units

Example CPTU – Mine Tailings with ice lenses

Ice lenses = sharp spikes in q_c and u_2

Use of dissipation tests to aid in classification

UMASS

[Campanella et al, 1984]

Soil Classification/Behavior Chart using G_{max}

- $-G_0 = G_{max}$
- V_s direct measure from seismic CPTU
- ρ_t must be estimated

Recommendations: CPT/CPTU based Soil Identification/Classification

- Use all information available, e.g., q_c or q_t, f_s, u, F_r, B_q
- Shape and magnitude of q_t profile gives indication on whether you are in uniform clay layer, sand layer, etc.
- Pore pressure profile readily indicates a drained condition (e.g., sand with $\Delta u = 0$) or undrained (e.g., clay with $\Delta u > 0$)
- Use q_t R_f R_q and/or Q_t - R_r - R_q diagrams to identify soil type. Accumulate local experience to create/modify diagrams.
- Short dissipation tests can help in identifying soil type
- Measurements using other sensors (e.g., $\ensuremath{V_s}\xspace)$ can enhance soil identification

