

Helmut F. Schweiger

Computational Geotechnics Group Institute for Soil Mechanics and Foundation Engineering Graz University of Technology

CONTENTS

- Introduction
- Typical excavation sequence for NATM-tunnels
- Modelling 3D-effects in plane strain analysis
- Influence of small strain stiffness
- 3D modelling
- Modelling of face stability problems
- Summary

INTRODUCTION

3-D Models

- easy modelling of excavation sequence
- computational effort high
- essential for analysis of face stability

Plane Strain

- assumption of pre-relaxation factors
- excavation sequence in cross section
- face stability cannot be considered
- "state of the art" in practice

TYPICAL NATM EXCAVATION

initial stress state

primary support of top heading

primary support of bench

unsupported zone at tunnel face

transition top head.
- bench excavation

transition bench – invert excavation

EXAMPLE OF STAGED EXCAVATION

2D MODELLING - LOAD REDUCTION METHOD

approximate values for β:

 $\beta = 0.2 - 0.5$ for top heading excavation

 $\beta = 0.4 - 0.8$ for side drift excavation

(Laabmayr & Swoboda 1986)

EXCAVATION

PLAXIS: Mstage 1- β

2D MODELLING - STIFFNESS REDUCTION METHOD

approximate values for α :

$$\alpha = 0.3 - 0.5$$

(Schikora & Fink 1982)

PRE-RELAXATION

"PLASTIC ZONE" WITHOUT LINING

"PLASTIC ZONE" WITH LINING

CHOICE OF α AND β

- values depend on:
 - ground conditions
 - length of unsupported section
 - advance rate
 - time of construction of invert
 - experience of personel
 -

WHICH METHOD?

- Working Group 1.6 of DGGTLoad Reduction Method
- Stiffness Reduction Method Influence of
 - Poisson ratio
 - Constitutive model
- Correlation of α and β very difficult
 (Baumann & Hilber 1985, Schweiger et al. 1997)

MODELLING OF SUPPORT MEASURES

Shotcrete

- strength and stiffness highly time dependent
- increase of Young's modulus for subsequent excavation steps is a practical approach
- alternatively complex constitutive model can be used

Rock bolts

- in practice often by means of increase of cohesion
- special elements of various types (bars, beams, ..)

Final concrete lining

- additional calculation without modelling of excavation sequence in detail (subgrade reaction method)
- from FE-analysis assuming that shotcrete lining carries no load in the long term

SUPPORT TOP HEADING

BOUNDARY CONDITIONS

lateral: approx. 4 - 5 D

top: ground surface or approx. 3 D

bottom: 2-3 D (geology !?)

attention in rocks when joints are present!

EXAMPLE - INFLUENCE OF SMALL STRAIN STIFFNESS

- Variation of overburden (H/D=0.5, 1.0, 3.0, 5.0)
- Increase of distance between tunnel and bottom boundary of the mesh to 4D
- Multilaminate Model for Soil, Mohr-Coulomb Model

SURFACE SETTLEMENTS

Mohr-Coulomb Model

■ Variation of overburden (H/D=0.5, 1.0, 3.0, 5.0)

SURFACE SETTLEMENTS

Multilaminate Model for Soil with small strain stiffness

■ Variation of overburden (H/D=0.5, 1.0, 3.0, 5.0)

SURFACE SETTLEMENTS

Mohr-Coulomb Model

• Increase of distance between tunnel and bottom boundary of the mesh

SURFACE SETTLEMENTS

Multilaminate Model for Soil with small strain stiffness

• Increase of distance between tunnel and bottom boundary of the mesh

COMPARISON OF NORMALISED SURFACE SETTLEMENTS

INFLUENCE OF SMALL STRAIN STIFFNESS

SMALL STRAIN REGION

3D MODEL

still influence of boundary!

START EXCAVATION TOP HEADING

EXCAVATION TOP HEADING

1. round top heading

EXCAVATION TOP HEADING

RESULTS 3D MODEL

3D MODEL - VERTICAL ARCHING

3D MODEL - HORIZONTAL ARCHING

IMPROVED 3D MODEL

FACE STABILITY

Pictures: IC-CONSULENTEN, WIEN - SALZBURG

SAFETY FACTOR WITH FEM

Definition of safety factor obtained by FEM (available = unfactored value)

$$\eta_{fe} = \frac{tan\phi_{available}}{tan\phi_{failure}} = \frac{c_{available}}{c_{failure}}$$

Basically 2 possibilities to obtain factor of safety:

- A) Calculation with unfactored parameters (yields deformations for service state) > automatic reduction of strength parameters of soil until equilibrium is no longer achieved in numerical analysis (some FE-codes do this automatically > φ/c-reduction technique)
- B) Calculation with factored parameters > perform new calculation with different factors until equilibrium is no longer achieved in numerical analysis (some codes do this automatically)

(corresponds to concept of partial factors of safety)

see also: e.g. Griffiths (1980), Naylor (1981), Brinkgreve & Bakker (1991), Matsui & San (1992)

SUMMARY FROM FACE STABILITY STUDY

Overburden height not critical for $\phi > 20^{\circ}$

(see also Vermeer, Ruse, Marcher; Mayer et al., etc.)

Tunnel diameter and cohesion important ($\phi > 20^{\circ}$) approximate relationsship:

 $c_{required} = \gamma \cdot D/10$

(Vermeer, Ruse, Marcher)

Deformation (longitudinal) even for failure condition I relatively small

Up to failure condition II displacements increase progressively, but safety margin is already low at failure condition I

FACE REINFORCEMENT

Face reinforcement with geotextile-elements

FACE REINFORCEMENT

FACE REINFORCEMENT

Face reinforcement with geotextile-elements

SUMMARY

- 2D-analysis state-of-the-art in practice
 - > prerelaxation methods

(load reduction method – stiffness reduction method)

Attention with boundary conditions

(in particular with MC-models)

- Full 3D analysis for complex excavation sequence leads to very large models
- For face stability 3D analysis required