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INTRODUCTION

= 3-D Models

 easy modelling of excavation sequence
e computational effort high
« essential for analysis of face stability

= Plane Strain
e« assumption of pre-relaxation factors
e excavation sequence in cross section

« face stability cannot be considered
« "state of the art" in practice
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TYPICAL NATM EXCAVATION
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DEFORMATION AHEAD OF FACE

tunnel face monitoring section

excavation

sequence

Chainage

y

settlements ahead
of tunnel face

—3

A 4

settlements of
unsupported zone

A 4

settlements after
installation of
monitoring
section

Settlements

A 4
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2D MODELLING - LOAD REDUCTION METHOD

approximate
values for B :

=0.2-0.5
for top heading
excavation

=04-0.8
for side drift
excavation

(Laabmayr & Swoboda 1986)

EXCAVATION

PLAXIS: Mstage 1- B
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2D MODELLING - STIFFNESS REDUCTION METHOD

approximate
values for a :

a=03-0.5

(Schikora & Fink 1982)

EXCAVATION
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FULL EXCAVATION WITH LINING
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FULL EXCAVATION WITHOUT LINING
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"PLASTIC ZONE" WITHOUT LINING
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"PLASTIC ZONE" WITH LINING
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CHOICE OF oo AND B

= values depend on:
= ground conditions
* length of unsupported section
= advance rate
= time of construction of invert

= experience of personel

B COMPUTATIONAL GEOTECHNICS, Gold Coast, 4-8 February 2008
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WHICH METHOD ?

= Working Group 1.6 of DGGT
> Load Reduction Method

= Stiffness Reduction Method

Influence of
* Poisson ratio
* Constitutive model

= Correlation of a and B very difficult
(Baumann & Hilber 1985, Schweiger et al. 1997)
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MODELLING OF SUPPORT MEASURES

= Shotcrete
 strength and stiffness highly time dependent
e increase of Young's modulus for subsequent
excavation steps is a practical approach
 alternatively complex constitutive model can be used

= Rock bolts

 In practice often by means of increase of cohesion
» special elements of various types (bars, beams, ..)

= Final concrete lining
e additional calculation without modelling of excavation
seqguence in detail (subgrade reaction method)
* from FE-analysis assuming that shotcrete lining
carries no load in the long term
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SUPPORT TOP HEADING

* sometimes not sufficient support for beam
of top heading > numerical problems
\

* temporary invert for top heading

B COMPUTATIONAL GEOTECHNICS, Gold Coast, 4-8 February 2008 17
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BOUNDARY CONDITIONS

yyasan

B COMPUTATIONAL GEOTECHNICS, Gold Coast, 4-8 February 2008

lateral: approx. 4 -5 D

top: ground surface or
approx. 3 D

bottom: 2-3 D (geology !?)

attention in rocks when
joints are present !
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EXAMPLE - INFLUENCE OF SMALL STRAIN STIFFNESS

surface (H/D=5.0)
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100 m
= Variation of overburden (H/D=0.5, 1.0, 3.0, 5.0)
» Increase of distance between tunnel and bottom boundary of the mesh to 4D

= Multilaminate Model for Soil, Mohr-Coulomb Model
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SURFACE SETTLEMENTS

Mohr-Coulomb Model

.\ GégtecHnics 3D ASPECTS OF NATM TUNNELLING

distance from symmetry axis [m]
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= Variation of overburden (H/D=0.5, 1.0, 3.0, 5.0)
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SURFACE SETTLEMENTS

Multilaminate Model for Soil with small strain stiffness
distance from symmetry axis [m]
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= Variation of overburden (H/D=0.5, 1.0, 3.0, 5.0)
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SURFACE SETTLEMENTS

Mohr-Coulomb Model

distance from symmetry axis [m]

-\ GRoUP 3D ASPECTS OF NATM TUNNELLING
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= Increase of distance between tunnel and bottom boundary of the mesh
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GROUP

SURFACE SETTLEMENTS

Multilaminate Model for Soil with small strain stiffness
distance from symmetry axis [m]
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= Increase of distance between tunnel and bottom boundary of the mesh

B COMPUTATIONAL GEOTECHNICS, Gold Coast, 4-8 February 2008 23



COMPUTATIONAL

£\ gegtecHnics 3D ASPECTS OF NATM TUNNELLING Y,

COMPARISON OF NORMALISED SURFACE SETTLEMENTS
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INFLUENCE OF SMALL STRAIN STIFFNESS

5 —
Offset from westbound tunnel axis: m
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3D ASPECTS OF NATM TUNNELLING Y,
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3D ASPECTS OF NATM TUNNELLING
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SMALL STRAIN REGION

SCALE: ¢ cos
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3D MODEL
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START EXCAVATION TOP HEADING
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EXCAVATION TOP HEADING
1. round top heading
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shotcrete in previous section
2. round top heading
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3D MODEL - VERTICAL ARCHING
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IMPROVED 3D MODEL

diameter of tunnel D =9 m
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Pictures: IC-CONSULENTEN, WIEN - SALZBURG
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SAFETY FACTOR WITH FEM

Definition of safety factor obtained by FEM (available =
unfactored value)

_ tan(l) available ¢ available

rlfe — t —
an(l)failure cfailure

Basically 2 possibilities to obtain factor of safety:

A) Calculation with unfactored parameters (yields deformations for
service state) > automatic reduction of strength parameters of soil
until equilibrium is no longer achieved in numerical analysis

(some FE-codes do this automatically > ¢/c-reduction technique)

B) Calculation with factored parameters > perform new calculation with
different factors until equilibrium is no longer achieved in numerical

analysis (some codes do this automatically)

see also: e.g. Griffiths (1980), Naylor (1981), Brinkgreve & Bakker (1991), Matsui & San (1992)

B COMPUTATIONAL GEOTECHNICS, Gold Coast, 4-8 February 2008

TU

Grazm

37



I fa! 3D ASPECTS OF NATM TUNNELLING TY
3D MODELLING - FACE STABILITY

plotted: mean normal stress (c,+c,+0,)/3
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3D MODELLING - FACE STABILITY
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3D MODELLING - FACE STABILITY
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3D MODELLING - FACE STABILITY
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3D MODELLING - FACE STABILITY
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3D MODELLING - FACE STABILITY
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3D MODELLING - FACE STABILITY
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3D MODELLING - FACE STABILITY
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3D MODELLING - FACE STABILITY
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3D MODELLING - FACE STABILITY
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3D MODELLING - FACE STABILITY
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working load condition failure condition |
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3D MODELLING - FACE STABILITY

Msf

2.4 I I | | |

longitudinal displacements [cm]
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SUMMARY FROM FACE STABILITY STUDY

Overburden height not critical for ¢ > 20°
(see also Vermeer, Ruse, Marcher ; Mayer et al., etc.)

Tunnel diameter and cohesion important (¢ > 20°)

approximate relationsship:
C

= v-D/10 (Vermeer, Ruse, Marcher)
Deformation (longitudinal) even for failure condition | relatively small

Up to failure condition Il displacements increase progressively,
but safety margin is already low at failure condition |
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FACE REINFORCEMENT

Face reinforcement with geotextile-elements
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FACE REINFORCEMENT

anchor length 12 m anchor length 4 m
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FACE REINFORCEMENT
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Face reinforcement with geotextile-elements
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SUMMARY

= 2D-analysis state-of-the-art in practice

> prerelaxation methods

= Attention with boundary conditions

= Full 3D analysis for complex excavation sequence

leads to very large models

= For face stability 3D - analysis required
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