

Initial Stresses

Dennis Waterman

Plaxis BV

Initial stresses

- Initial stresses represent the equilibrium state of the undisturbed soil and consist of:
 - Soil weight
 - Loading history
- In Plaxis two possibilities exist:
 - K₀ procedure
 - Gravity loading

K₀-procedure

- Generation of initial stresses during input.
 - Needed: Coefficient for lateral earth pressure KO.
 - Disadvantage:
 No equilibrium for inclined surface
 - Advantage:
 No displacements are generated, only stresses.

$$\sigma'_{h} = \sigma'_{v} \bullet K_{0}$$

- Calculation of initial stresses by weight loading.
 - Disadvantage:
 Non-physical displacements are created.
 - Advantage: Equilibrium satisfied in all cases.

For 1D compression:
$$\sigma'_n = \sigma'_v \bullet \frac{v}{1-v}$$
 so $K_0 = \frac{v}{(1-v)}$

Procedure

- Initial phase
 - Skip K₀ procedure, ΣMweight remains zero
- Phase 1
 - Choose *Plastic calculation*, *Total multipliers*
 - Set weight multiplier Σ Mweight = 1
- Phase 2
 - Select *Reset displacements to zero* to discard all displacements from raising the gravity

Notes

- Undrained material
 - Select *Ignore undrained behaviour* in Phase 1 to prevent the generation of unrealistic excess pore pressures
- K₀ procedure has been used first
 - In the Initial phase redo the K_0 procedure, but with ΣM weight = 0; this will reset all initial stresses to zero.

Cases where gravity loading should be used instead of K₀-procedure:

- Strength reduction method: Phi/c reduction
- Provides a "conventional" safety factor
- Same numerical tool as for serviceability design
- Automatically detects most critical failure mechanism

- Phi/c reduction:
 - Reduction of strength parameters c and $tan(\phi)$ until failure is reached.
 - The factor of safety :

$$\Sigma Msf = \frac{c}{c_{reduced}} = \frac{\tan \varphi}{\tan \varphi_{reduced}}$$

Calculation procedure:

- Create a phi/c reduction phase
- Accept the default increment for Msf=0.1 from the multiplier tab-sheet.
- Calculate
- Carefully examine ΣMsf vs. displacement curve in Plaxis Curves

- Notes:
 - Select control point within (expected) failing body
 - Use sufficient number of load steps
 - Use a sufficiently fine mesh
 - Limit the maximum structural forces by choosing elasto-plastic behaviour for walls, anchors and geotextiles.

Number of load steps

Use different plots to check failure mechanisme

1. Arrows of incremental displacements

2. Shadings of incremental displacements

3. Shadings of incremental shear strains

Example 1 – stability of a drained slope

Example 1 – stability of a drained slope

Bischop analysis:

Bischop analysis: FoS = 1.54

Plaxis analysis: FoS = 1.57

Example 2, undrained stability of a slope:

Stability charts:
$$F = N_0 \frac{c_u}{P_d} = 6.6 \frac{50}{12 \cdot 20} = 1.38$$
, $N_0 = f(\theta, \frac{D}{H})$

(Taylor, 1948)

Example 2, undrained stability of a slope:

Automatic detection of most critical shear surface:

Example 2, undrained stability of a slope:

Automatic detection of most critical shear surface:

