

CG 11 HARDENING SOIL MODEL

Helmut F. Schweiger

Computational Geotechnics Group Institute for Soil Mechanics and Foundation Engineering Graz University of Technology

CONTENTS

- Introduction (why advanced model?)
- Short description of Hardening Soil Model
- Parameters of Hardening Soil Model
- Comparison with experimental data
- Influence of important parameters
- Summary

INTRODUCTION

Soil behaviour includes:

- difference in behaviour for primary loading reloading/unloading
- nonlinear behaviour well below failure conditions
- stress dependent stiffness
- plastic deformation for isotropic or K₀-stress paths
- dilatancy is not constant
- small strain stiffness(at very low strains and upon stress reversal)
- influence of density on strength and stiffness

cannot be accounted for with simple elastic-perfectly plastic constitutive models

INTRODUCTION

Mohr-Coulomb model

INTRODUCTION

INTRODUCTION

model	s _{max} [mm]
LE	33
МС	36
нѕ	60

- All models calculate settlements
- Differences in shape of trough and maximum values

INTRODUCTION

Example for vertical displacements behind a retaining wall

- > Hardening Soil Model calculates **Settlements**
- > Mohr-Coulomb Model calculates **Heave**

DESCRIPTION OF HARDENING SOIL MODEL

$$-\varepsilon_1 = \frac{1}{2 E_{50}} \cdot \frac{q}{1 - q/q_a} \qquad \text{for q < q_f}$$

q_a asymptotic value for shear strength

$$q_a = \frac{q_f}{R_f}$$

$$q_f = (c \cdot \cot \varphi - \sigma_3) \frac{2\sin \varphi}{1 - \sin \varphi}$$

REGION 1 no yield surface active > elastic

REGION 2 shear hardening surface active

DESCRIPTION OF HARDENING SOIL MODEL

Deviatoric yield surface: lines of equal shear strains in triaxial test

DESCRIPTION OF HARDENING SOIL MODEL

REGION 3 shear hardening and volumetric hardening surfaces active

REGION 4 volumetric hardening surface active

DESCRIPTION OF HARDENING SOIL MODEL

Volumetric yield surface: lines of equal volumetric strains in triaxial test

$$E_{50} = E_{50}^{ref} \cdot \left(\frac{c \cdot \cot \varphi + \sigma_3'}{c \cdot \cot \varphi + p^{ref}} \right)^m$$

$$E_{ur} = E_{ur}^{ref} \cdot \left(\frac{c \cdot \cot \varphi + \sigma_3'}{c \cdot \cot \varphi + p^{ref}} \right)^m$$

$$E_{oed} = E_{oed}^{ref} \cdot \left(\frac{c \cdot \cot \varphi + \sigma_1'}{c \cdot \cot \varphi + p_{ref}} \right)^m - \text{holds strictly for K}_0\text{-stress paths only}$$

$$ho_{
m ref}$$
: σ_3 for ${\sf E}_{
m 50}$ σ_1 for ${\sf E}_{
m oed}$

DESCRIPTION OF HARDENING SOIL MODEL

Volumetric behaviour

"stress dilatancy theory" (Rowe, 1962)

dilatancy angle > non-associated flow rule
$$\dot{\mathcal{E}}^p_v = \sin \psi_m \dot{\gamma}^p$$

$$\sin \psi_m = \frac{\sin \varphi_m - \sin \varphi_{cv}}{1 - \sin \varphi_m \sin \varphi_{cv}}$$

$$\sin \varphi_m = \frac{\sigma_1' - \sigma_3'}{\sigma_1' + \sigma_3' - 2c \cdot \cot \varphi}$$

$$\sin \varphi_{cv} = \frac{\sin \varphi - \sin \psi}{1 - \sin \varphi \sin \psi}$$

ALTERNATIVES TO ROWE

$$\sin \hat{\psi}_m = \sin \psi_m \left(\frac{\sin \phi'_m}{\sin \phi'} \right)^p$$

e.g. SOREIDE 2003

consequence of flow rule in undrained triaxial compression stress path

PARAMETERS OF HARDENING SOIL MODEL

- φ' friction angle
- c´ cohesion
- ψ' dilatancy angle

 E_{50}^{ref} secant modulus from triaxial test (controls deviatoric hardening)

 E^{ref}_{oed} tangential modulus from oedometer test (controls volumetric hardening)

 E_{ur}^{ref} unloading / reloading modulus

default: $E_{ur}^{ref} = 3 E_{50}^{ref}$

m power for stress dependency of stiffness

PARAMETERS OF HARDENING SOIL MODEL

 v_{ur} Poisson ratio for unloading / reloading (default $v_{ur} = 0.2$)

 p^{ref} reference stress (default $p^{ref} = 100$ stress units)

 K_0^{nc} K_0 -value for normal consolidation (default = 1-sin ϕ) (controls volumetric hardening)

 $R_f = q_f / q_a$ (default $R_f = 0.9$)

PARAMETERS OF HARDENING SOIL MODEL

$$E_{oed}^{ref} \approx I_D \bullet 60MPa$$

 $E_{oed}^{\it ref} pprox I_D \bullet 60MPa$ Correllation for $p^{\it ref}=$ 100 kPa (Lengkeek) I_D = relative density

PARAMETERS OF HARDENING SOIL MODEL

PARAMETERS OF HARDENING SOIL MODEL

For normally consolidated clays (m=1):

$$E_{oed}^{ref} \approx \frac{1}{2} E_{50}^{ref}$$

Order of magnitude (very rough)

$$E_{oed}^{ref} \approx \frac{50000 \, kPa}{I_p}$$

Correlation with I_p for $p^{ref} = 100$ kPa

$$E_{oed}^{ref} \approx \frac{500 \, kPa}{w_L - 0.1}$$

Correlation by Vermeer

$$E_{oed}^{ref} \approx p^{ref} / \lambda^*$$

Relation with Soft Soil model

dense Hostun sand

dense Hostun sand

INFLUENCE E₅₀ / E_{oed}

INFLUENCE E₅₀ / E_{oed}

OEDOMETER TEST - COMPARISON MC / SS / HS

Mohr-Coulomb:

ratio σ_3/σ_1 determined by \mathbf{v}

Hardening Soil:

ratio σ_3/σ_1 determined by $\mathbf{K_0}^{\mathbf{nc}}$

Unloading: vur

OEDOMETER TEST - COMPARISON MC / SS / HS

UNDRAINED BEHAVIOUR

PLASTIC POINTS

SUMMARY

SUMMARY

	Mohr- Coulomb Model	Hardening Soil Model
stress dependent stiffness*	NO	YES
distinction in stiffness for primary loading and unloading / reloading	NO	YES
plastic strains for stress states below MC - failure line (deviatoric and volumetric hardening)	NO	YES
failure according to Mohr-Coulomb	YES	YES

^{* (}not only dependent on σ_0 , this is possible also with MC-Model)

FURTHER DEVELOPMENTS

HS-small: extension of HS model incorporating small strain stiffness

2 additional parameters:

- reference shear modulus at very small strains: G₀^{ref}
- shear strain at which $G = 0.7 G_0$: $\gamma_{0.7}$