

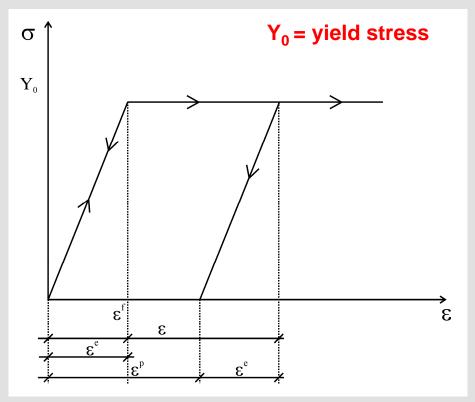
Helmut F. Schweiger

Computational Geotechnics Group Institute for Soil Mechanics and Foundation Engineering Graz University of Technology

Acknowledgement for providing some of the material: Gioacchino (Cino) Viggiani, Ronald Brinkgreve

LINEAR ELASTIC - PERFECTLY PLASTIC

One-dimensional



IMPORTANT: yield stress = failure stress for perfect plasticity

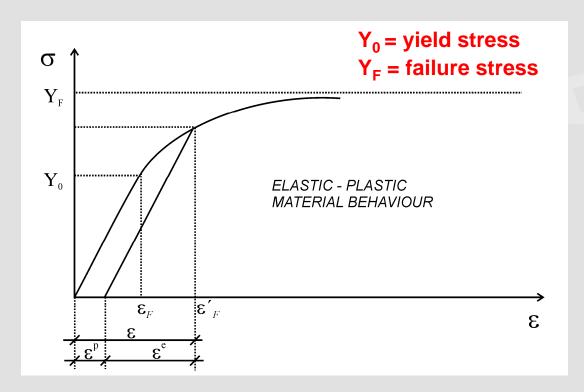
$$\varepsilon = \varepsilon^e + \varepsilon^p$$

General three-dimensional stress state

$$\{\varepsilon\} = \{\varepsilon\}^{\mathsf{e}} + \{\varepsilon\}^{\mathsf{p}}$$

LINEAR ELASTIC - PLASTIC

One-dimensional



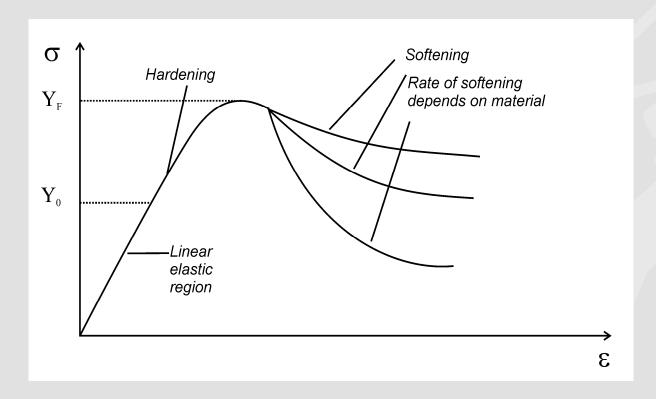
IMPORTANT: yield stress ≠ failure stress

$$\varepsilon = \varepsilon^{e} + \varepsilon^{p}$$

$$\{\varepsilon\} = \{\varepsilon\}^{e} + \{\varepsilon\}^{p}$$

LINEAR ELASTIC - PLASTIC WITH SOFTENING

One-dimensional



 Y_0 = yield stress

Y_F = failure stress

THEORY OF PLASTICITY

For describing linear elastic - plastic material behaviour we need (for general stress states):

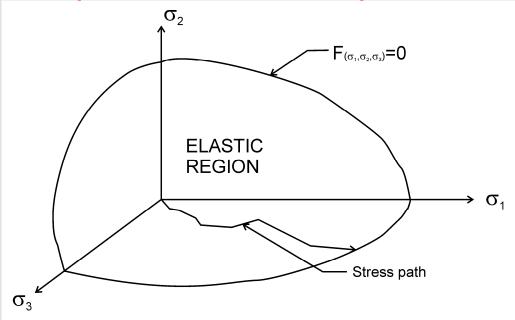
- 1. Stress-strain behaviour in elastic range
- 2. Yield function or failure function (defines onset of plastic deformation)
- 3. Flow rule (defines direction of plastic strain increment)
- 4. Definition of strain hardening (softening) (defines change of yield function with stress and/or strain)

For standard MC-model:

- Linear elasticity in elastic range
- No strain hardening/softening > perfect plasticity

YIELD / FAILURE FUNCTION

F = 0 represents surface in stress space



$$f_{(\{\sigma\})} = f_{(\sigma_1,\sigma_2,\sigma_3)}$$

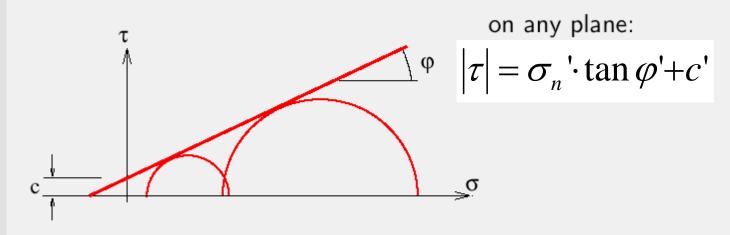
 $f_{(\{\sigma\})} < 0$ stress state is elastic

 $f_{(\{\sigma\})} = 0$ stress state is plastic

 $f_{(\{\sigma\})} > 0$ stress state not admissible

MOHR COULOMB CRITERION

Mohr-Coulomb yield function



yield function:
$$f = \frac{1}{2} (\sigma'_1 - \sigma'_3) + \frac{1}{2} (\sigma'_1 + \sigma'_3) \sin \varphi' - c' \cos \varphi'$$

 σ_1 ' and σ_3 ': major and minor principal stresses

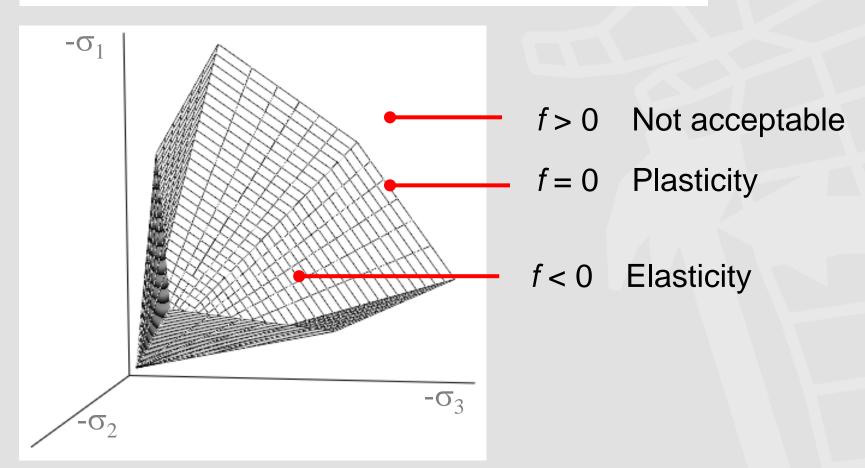
sign convention

positive: tensile stress, elongation, volume increase

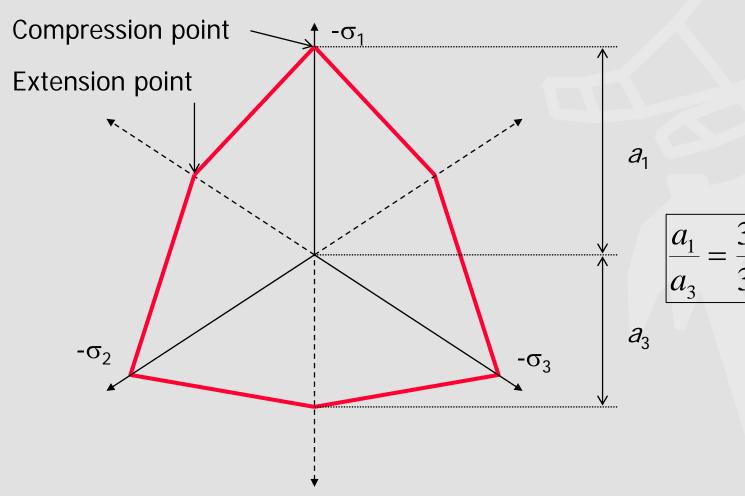
negative: compressive stress, compression, volume decrease

MOHR COULOMB IN 3D STRESS SPACE

$$f = \frac{1}{2} \left(\sigma'_1 - \sigma'_3\right) + \frac{1}{2} \left(\sigma'_1 + \sigma'_3\right) \sin \varphi' - c' \cos \varphi'$$



MOHR COULOMB IN DEVIATORIC PLANE



$$\left| \frac{a_1}{a_3} = \frac{3 + \sin \varphi'}{3 - \sin \varphi'} \right|$$

FLOW RULE

Check of yield / failure function tells us whether we have plastic strains but not direction and magnitude of plastic strain increment > another function required > plastic potential

Plastic strain increments

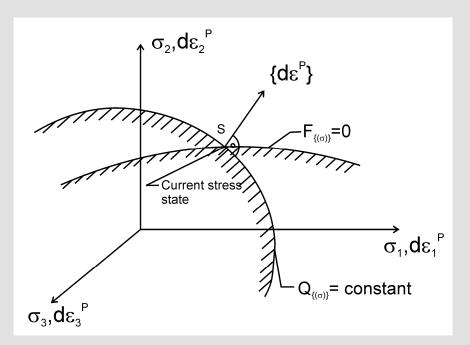
$$\left\{ d\varepsilon \right\}^P = d\lambda \left\{ \frac{\partial g}{\partial \{\sigma\}} \right\}$$

g plastic potential

 $d\lambda$ constant factor, NOT a material parameter

$$g = g_{(\{\sigma\})}$$

FLOW RULE



$$\sigma_{2},d\epsilon_{2}^{P}$$

$$\{d\epsilon^{P}\}$$

$$Current stress state$$

$$\sigma_{1},d\epsilon_{1}^{P}$$

$$Q = F$$

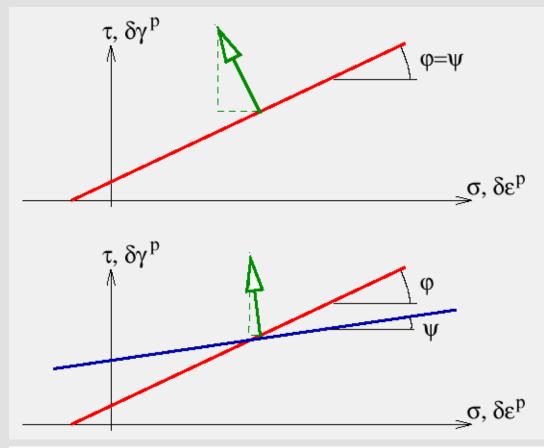
$$\left\{ d\varepsilon \right\}^{P} = d\lambda \left\{ \frac{\partial g}{\partial \{\sigma\}} \right\}$$

$$\left\{ d\varepsilon \right\}^{P} = d\lambda \left\{ \frac{\partial F}{\partial \left\{ \sigma \right\}} \right\}$$

g ≠ f > non associated flow rule

g = f > associated flow rule

MOHR COULOMB MODEL - PLASTIC POTENTIAL

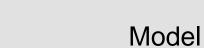


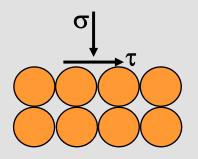
$$f = \frac{1}{2} \left(\sigma'_1 - \sigma'_3\right) + \frac{1}{2} \left(\sigma'_1 + \sigma'_3\right) \sin \varphi' - c' \cos \varphi'$$

dilatancy angle

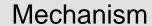
$$g = \frac{1}{2} (\sigma'_{1} - \sigma'_{3}) + \frac{1}{2} (\sigma'_{1} + \sigma'_{3}) \sin \psi' + \text{const.}$$

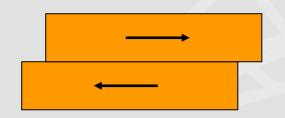
DILATANCY





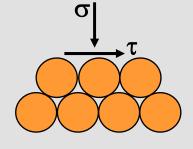
loose soils are non-dilatant or contractant



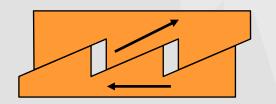


loose

$$\psi = 0$$



dense soils are dilatant



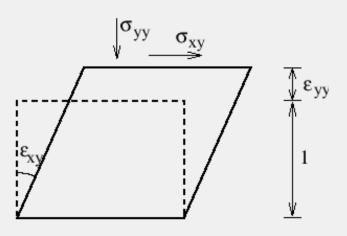
dense

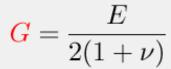
$$\psi \neq 0$$
, but $< \phi'$

strength = friction + dilatancy

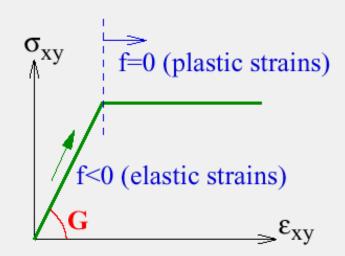
DILATANCY

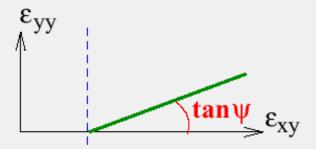
Simple shear test (drained)





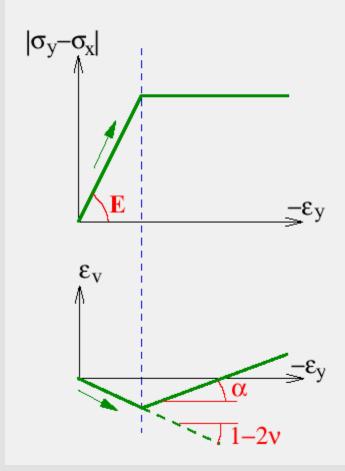
$$\tan \psi = \frac{\Delta \varepsilon_{yy}}{\Delta \varepsilon_{xy}}$$





DILATANCY

Triaxial test (drained)



$$\frac{E}{\Delta |\sigma_y - \sigma_x|} = 2G(1 + \nu)$$

$$\varepsilon_v = 2\varepsilon_x + \varepsilon_y$$

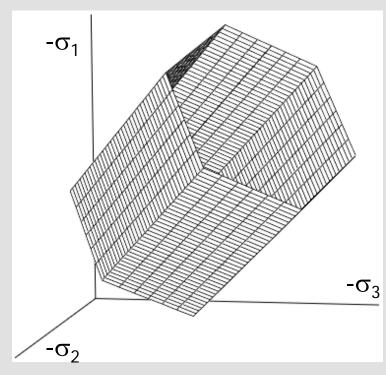
$$\tan \alpha = \frac{2\sin \psi}{1 - \sin \psi}$$

MOHR COULOMB MODEL - PARAMETERS

Ε	Young's modulus	$[kN/m^2]$
ν	Poisson's ratio	[-]
C'	(effective) cohesion	[kN/m ²]
φ'	(effective) friction angle	[0]
Ψ	Dilatancy angle	[°]

TRESCA FAILURE CRITERION

Tresca = Mohr-Coulomb with $\varphi = 0$ and $c \neq 0 = c_u$



 ψ = 0 > no plastic volumetric strains ν = 0.495 > negligible elastic volumetric strains

> can be used for undrained analysis in terms of total stresses

MOHR COULOMB MODEL - POSSIBILITIES AND LIMITATIONS

- Simple elastic perfectly-plastic model
- First order approach of soil behaviour in general
- Suitable for some practical applications (not for deep excavations and tunnels)
- Limited number and clear parameters
- Good representation of failure behaviour (drained)
- Dilatancy can be included

MOHR COULOMB MODEL - POSSIBILITIES AND LIMITATIONS

- Isotropic and homogeneous behaviour
- Linear elastic behaviour until failure
- No stress-dependent stiffness
- No distinction between primary loading and unloading or reloading
- No dilatancy cut off
 (for associated flow dilatancy is significantly overpredicted)
- Undrained behaviour not always realistic
- No anisotropy, no time-dependency (creep)