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BRITTLE FAILURE takes place around 
underground openings in massive to 
moderately jointed  rock masses 
subjected to high in situ stresses. It 
manifests itself in the form of spalling
resulting in a revised stable geometry 
with the onset of V-shaped notches. The 
extent and depth of failure is a function 
of the in situ stress magnitudes relative 
to the rock mass strength
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The onset of wall yield  due to boundary 
compression around an underground 
opening is one of the primary design 
issues in hard rock tunnelling at depth by 
tunnel boring machines or conventional 
excavation methods. In this lecture we 
will discuss spalling instabilities, 
although in cases the interest need be 
centred on dynamically induced tunnel 
failures such as rockbursts
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• Yield in weak rock  is controlled by 
continuum plastic shear slip. This 
is rarely observed in hard rock 
underground excavations

• Short and medium term strength 
in hard rock is observed to be the 
result of extension cracking and 
spalling

DUCTILE vs BRITTLE 
BEHAVIOUR
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Rock Susceptibility to Rock Susceptibility to 
SPALLINGSPALLING

• Tensile damage dominates initial yield process

• Low Ratio of  Compressive Strength, σC to Tensile 
Strength, σt

σσCC //σσtt < 6     =  Very Low< 6     =  Very Low
6 <  6 <  σσCC //σσtt < 8     =  Low< 8     =  Low
8 <  8 <  σσCC //σσtt < 10   =  Medium< 10   =  Medium

10 <  10 <  σσCC //σσtt > 15   =  High> 15   =  High
15 <  15 <  σσCC //σσtt =  Very High=  Very High

DiederichsDiederichs 20052005



Rock Susceptibility to Rock Susceptibility to 
ROCKBURSTINGROCKBURSTING

• If σσCC //σσtt is medium to very high is medium to very high rockburstrockburst potential potential 

for rock can be determined from for rock can be determined from σσCC (rock strength (rock strength 

required to store energy)required to store energy)

σσCC <   60 <   60 MPaMPa =  Very Low=  Very Low

60 <  60 <  σσCC <   80           =  Low<   80           =  Low

80 <  80 <  σσCC < 120           =  Medium< 120           =  Medium

120 <  120 <  σσCC > 150           =  High> 150           =  High

150 <  150 <  σσCC =  Very High=  Very High

DiederichsDiederichs 20052005
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Normally Spalling
(and Rockbursts) do not 
occur below GSI = 60
Most Likely when GSI > 70

DiederichsDiederichs 20052005

It is worth to notice that a 
significant contribution to this

understanding has been derived
from recent discrete element
simulations of Lac du Bonnet

granite (Diederichs et al.2004)
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Unstable crackUnstable crack
propagationpropagation

Stages of stressStages of stress--strain and acoustic responsestrain and acoustic response
in in uniaxialuniaxial testing testing ((BieniawskiBieniawski 1967, 1967, EberhardtEberhardt et al. 1998)et al. 1998)



Crack closure, σccCrack closure, σσcccc

Major thresholds within a 
stress-strain test on rock 

samples coupled with acoustic
emissions monitoring

Major thresholds within a 
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Crack initiation, σciCrack initiation, σσcici

Crack damage, σcdCrack damage, σσcdcd

Peak strength, σpeakPeak strength, σσpeakpeak

Diederichs et al. 2004
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Laboratory TestingLaboratory Testing



Biaxial tests run for Politecnico di Torino
at Dresden University 
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Stage I Stage I -- Damage InitiationDamage Initiation: Critically oriented flaws : Critically oriented flaws 
are exploited in the zone of maximum tangential are exploited in the zone of maximum tangential 
stress. The process initiates at the boundary of the stress. The process initiates at the boundary of the 
tunneltunnel

Localised 
damage

Stage II - Dilation: Shearing and crushing occurs in a Shearing and crushing occurs in a 
very narrow process zone. Extensive dilation at the very narrow process zone. Extensive dilation at the 
grain size scale occurs in this process zonegrain size scale occurs in this process zone

Process 
zone

Process 
zone

Buckling
Process zone 
stabilised by confining 
stress at notch tip

Stage III Stage III -- SpallingSpalling: : Development of the process zone leads 
to the formation of thin slabs. These thin slabs form by:  
shearing, splitting and buckling. The thickness of the slabs 
varies. The thickest slabs form as the notch reaches its 
maximum size. Near the notch tip the slabs are curved

Stage IV - Stabilization: Development of the notch stops 
when the notch geometry provides sufficient confinement to 
stabilize the process zone at the notch tip. This usually means 
there is a slight “tear-drop” like curvature to the notch shape. 
Alternatively, if the slabs from the notch flanks are held in 
place by artificial support, notch development will also stop

Martin et  al. 1997

The notch development is a 3D process  which The notch development is a 3D process  which 
is  directly linked to the tunnel advanceis  directly linked to the tunnel advance

Tunnel Longitudinal SectionTunnel Longitudinal Section

IIIIIIV

V

Stages

Tunnel AdvanceTunnel Advance
InitiationInitiation

Martin et  al. 1997
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(1) Stress induced fracturing initiates at 
approximately 0.3-0.5 σc and the critical
deviatoric stress for yield is essentially
independent of confining stress
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(2) No overbreak occurs at a maximum 
boundary stress equivalent to 40% of the 
compressive strength. This is a lower bound
strength as unfailed tunnels are not plotted

(2) No overbreak occurs at a maximum 
boundary stress equivalent to 40% of the 
compressive strength. This is a lower bound
strength as unfailed tunnels are not plotted



σσ33//σσcc

σσ11//σσcc

Axial Splitting

Tensile Failure

In situ 
Strength

Damage
Threshold (m=0)

Spalling
Failure

Slope of Spalling Limit
depends on Heterogeneity, 
Surface Effects, Damage, 
Stress Rotation

Distributed Damage
and Acoustic Emission

Damage Initiation 
Threshold depends on
Mineralogy, Grain Size, 
Bond Type

Shear Failure

Diederichs et al. 2004

A number of possible 
approaches

A number of possible 
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(2) Micromechanical Models: account for
microscopic aspects of rock fracture and/or 
crack propagation mechanisms
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(1) Phenomenological Models: use 
appropriate constitutive equations which
should describe the brittle failure processes
based on back analysis of carefully
documented case histories

(1) Phenomenological Models: use use 
appropriate appropriate constitutiveconstitutive equationsequations whichwhich
shouldshould describedescribe the the brittlebrittle failurefailure processesprocesses
basedbased on back on back analysisanalysis of of carefullycarefully
documenteddocumented case case historieshistories

(1) Phenomenological Models: use 
appropriate constitutive equations which
should describe the brittle failure processes
based on back analysis of carefully
documented case histories

(1) Phenomenological Models: use use 
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shouldshould describedescribe the the brittlebrittle failurefailure processesprocesses
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We discuss (1) onlyWe discuss (1) only



One common approach to estimate the yield
potential and the depth of disturbance for a 
tunnel is the Hoek and  Brown Criterion for
rock mass
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determined using
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It is found that this approach
is of limited reliability to
predict brittle failure for rock 
masses of good quality, 
typically GSI > 70-75

It is found that this approach
is of limited reliability to
predict brittle failure for rock 
masses of good quality, 
typically GSI > 70-75



At low confinement levels, the accumulation
of significant rock damage, equivalent to loss
of cohesion (i.e. mb=0), ocurs when σ′1- σ′3 = 
1/3 to 1/2 σc (i.e. when s= 0.11 to 0.25) 
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mb=0 Modelmb=0 Model

The cohesive strength is gradually
destroyed by tensile cracking and crack 
coalescence. The frictional strength can be
mobilized only when the cohesive strength
is significantly reduced

The cohesive strength is gradually
destroyed by tensile cracking and crack 
coalescence. The frictional strength can be
mobilized only when the cohesive strength
is significantly reduced

Hajiabdolmajid et  al. 2002
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DIAMETER: 4.75 mDIAMETER: 4.75 m
TOOLS: 35 cutting TOOLS: 35 cutting disksdisks
MAXIMUM THRUST: 6950 MAXIMUM THRUST: 6950 kNkN
TOTAL POWER: 895 kWTOTAL POWER: 895 kW

PontPont VentouxVentoux -- Susa Susa HydropowerHydropower SystemSystem

Free Flow TunnelFree Flow Tunnel

PontPont--VentouxVentoux
F2 LengthF2 Length

PontPont VentouxVentoux -- SusaSusa
HydropowerHydropower SystemSystem

F2 F2 -- ClareaClarea
LengthLength

Free Flow TunnelFree Flow Tunnel
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Instability of rock wedges occurs with Rock Mass Quality
Index RMR < 55

Spalling instability is observed to take place when the 
overburden is greater than 500-600 m and RMR > 65
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SECTION 2 (550SECTION 2 (550--565 m)565 m)

SpallingSpallingSpalling

SpallingSpallingSpalling

The The overbreakoverbreak zoneszones givegive the the directionsdirections of of σσ11

and and σσ33 .. From FlatFlat Jack Jack measurementsmeasurements the Stress the Stress 
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Hydroelectric System
Pont Ventoux - Susa
Chainage 0-1500 m

Hydroelectric System
Pont Ventoux - Susa



Uniaxial compressive strength (peak value)    σc, p = 135 MPa
Uniaxial compressive strength (residual value) σc, r = 10 MPa
Hoek-Brown constant (peak) mi, p = 8.1
Hoek-Brown constant (residual) mi, r = 56.1
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Intact rock uniaxial compressive strength σci = 135 MPa
Hoek-Brown constant (ir) mi = 8.1
Geological Strength Index GSI = 70
Hoek-Brown constant (rm) mb = 2.8
Hoek-Brown constant (rm) s = 0.04
Rock mass uniaxial compressive strength σcm = 36.7 MPa
Deformation modulus Ed = 35 GPa

EQUIVALENTEQUIVALENT--CONTINUUM MODEL CONTINUUM MODEL 



LEFT

RIGHT

σci = 100 MPa

σci = 75 MPa

SAFETY FACTOR

SAFETY FACTOR

m= 0 approach, s=0.25

m= 0 approach, s=0.25

FAULT  ZONE  AT  CH  2359 m

BLOCK MOVEMENT ON LEFT WALL



FAULT  ZONE  AT  CH  2359 m

TUNNEL FACE
NEARLY PARALLEL HORIZONTAL DISCONTINUITIES ARE VISIBLEJOINT ACROSS THE RIGHT WALL OF TUNNEL

GRIPPER

WATER FLOW AT THE TUNNEL WALL

TUNNEL
FACE

J1

J2

J3a J3b

3D Discrete Fracture Network model created by the Fracman code 
with plot of joint sets. This is typical of rock conditions on the right wall



ZONE 1

JOINT 1
JOINT 2

ZONE 3

ZONE 2

4.75 m

ZONE 1

JOINT 1

JOINT 2

4.75 m

ZONE 2

ZONE 3

Detail of deterministic model Detail of DFN model

Material Zone

Properties 1 2 3

E
m

[GPa] 60 30 10

ν
m

[-] 0.25 0.35 0.35

c [MPa] 34 6.0 2.8

φ [°] 38 36 34

Joint
Properties

Zone Joint

1 2 3 1 - 2
Kn [GPa/m] 40 5 10-3 10 10-3 1.25 10-3

Ks [GPa/m] 4 5 10-4 10 10-4 1.25 10-4

c [MPa] 0.1 0 0 0
φ [°] 33 22 22 22

PROPERTIESPROPERTIES



Q =10

Q = 0.007

Q =10

Q =0.007

BLOCK MOVEMENTS AROUND THE TUNNELBLOCK MOVEMENTS AROUND THE TUNNEL

Detail of deterministic model Detail of DFN model

(a) (b)

YIELDED BLOCKS AND SHEAR DISPLACEMENTSYIELDED BLOCKS AND SHEAR DISPLACEMENTS
AROUND THE TUNNELAROUND THE TUNNEL

Detail of deterministic model Detail of DFN model



(a)

Q =10

Q = 0.007

Q =10

Q =0,007
(b)

LEFT WALL

RIGHT WALL

CH 2359 m

FAULT
LEFT  WALL

FAULT
RIGHT  WALL

CHAINAGE 2742 m

Axial Force 
on structure

Moment on 
structure



Conditions becoming
difficult to require
continuous placement
of liner plates
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