Saturated soil modelling: Griffith University: February 2010

11. Modelling particle breakage and erosion of fine particles

David Muir Wood d.muirwood@dundee.ac.uk

WAC Bennett Dam

BChydro @

WAC Bennett Dam

BChydro @

sinkhole 1: June 1996

BChydro @

WAC Bennett Dam: sinkhole incident 1996

spillway flow 3000m³/s (> Canadian Niagara Falls)

fall in reservoir level: 2m in 7 weeks

WAC Bennett Dam: cross section

BChydro

Core material (Sinkhole 1)

Canyon section: 2003 seepage model

Bennett Dam: statement of problem

non-plastic material with changing granulometry and density

- what are consequences for mechanical response of dam?
- •potential for future deformations?

need model of soil behaviour which can incorporate changes in density and grading of the soil

internal erosion

- grain transport by internal seepage
- suffusion
- increase in permeability
- potential consequences?
- concentrate on mechanical effects...
- ...not concerned with process of particle transport

internal erosion

Teton Dam, Idaho 5 June 1976

occurrence of crushing

change in grading

irreversible

1: before testing

2: after compression to 6.21MPa

3: after triaxial compression

Chattahoochee River sand

Vesic & Clough, 1968

two examples of general question:

- soil grading may change through erosion/transport or crushing induced by compression/shearing
- what effect does this have on mechanical behaviour?
- material changing (irreversibly) while being studied

Chattahoochee River sand

- evolving particle size distribution: particle breakage
- triaxial compression with confining pressure 62.1MPa
- (Vesić & Clough, 1968)

limiting gradings...

- define limiting gradings
- self-similar fractal grading: one extreme
- single size material: other extreme

define grading state index I_G

- particle crushing → self-similar 'fractal' grading (McDowell)
- fractal distribution linear in log:log plot
- ullet define I_G as ratio of areas ABC and ABD

three aspects to the problem:

- •characterisation of evolving grading curve additional grading state index
- •evolution law for grading state index
- •influence of grading state index on constitutive properties

research in progress

Grading state index: crushing

crushing?

coordination number (number of contacts) larger for larger particles

smaller particles tend to crush

numerical simulations – compression and shearing of assembly of agglomerates

gradings tend to self similar 'fractal' grading

continuous 'fractal' grading: every void space filled with progressively smaller particles

University of BRISTOL

natural soils:

discovering fractal limiting gradings?

Grading state index I_G: definition

Grading state index I_G

Bennett Dam core

fines removal: I_G falling

Chattahoochee River sand

grain crushing: I_G increasing

Grading state index I_G: evolution

Bennett Dam:

- fines migration modelling (transport/conservation)
- •smaller particles preferentially removed: $I_G \downarrow$

crushable particles:

- •smaller particles preferentially crush: I_G ↑
- •link with mineralogy, angularity, packing, stress level, mobilised friction (Hardin)

Grading state index I_G: influence

influence of grading state index on constitutive properties

- elastic properties unchanged (first order)?
- •friction/strength unchanged (first order)?

critical state line – expected to change!evidence?

critical states (grading)

critical states: fabric, grading

- can we be certain that asymptotic state has been reached?
- state = stresses + density + fabric (contacts, etc) + grading (particle size distribution)
- grading change from particle breakage or from erosion
- material changing while it is being tested
- expect all aspects of fabric including grading to reach steady state on average

Grading state index I_G: critical states

Grading state index I_G: critical states

Grading state index I_G: critical states

simulations for assemblies of agglomerates critical state line *changes* with crushing

fresh samples - pre-compressed samples

Cheng, 2005

Bennett Dam: interpretation of effect of fines content on location of critical state line (triaxial tests, artificial mixtures)

University of

non-monotonic...!?

Severn-Trent sand model

DUNDEE

Severn-Trent sand

- extended Mohr-Coulomb model
- model built round critical state line as divider of response
- adequate complexity effects of density, strain softening
- simple assumed relationships
- (use as basis for extended model)
- many such models exist aesthetic judgement mathematical expediency

Severn-Trent sand: 4 key elements

Severn-Trent sand: simulations

- drained triaxial compression tests
- different initial densities
- variation in current strength
- monotonic hardening but non-monotonic response!

e=0.83 - batr06 (model) e=0.92 - alert51 (model) e=0.94 - batr02 (model) q (kPa) 100 100 200 p'(kPa)q (kPa) 100 15 axial strain (%)

Grading state index

Bennett Dam

Severn-Trent sand

transport of fines from core

void ratio ↑

grading state index ↓

critical state line ↓??

state parameter 1

soil feels looser 😊

e=0.83 - batr06 (model) e=0.92 - alert51 (model) e=0.94 - batr02 (model) q (kPa) 100 100 200 p'(kPa)q (kPa) 100 15 axial strain (%)

Grading state index

Bennett Dam

Severn-Trent sand

transport of fines from core

void ratio ↑

grading state index ↓

critical state line ↑??

state parameter ↓

soil feels denser ©

Grading state index

Bennett Dam??

benefit of simple model that systematically incorporates changes in stress level *and* density *and* grading (making up *state* of soil)

model has to be honed – subtle data requirements for calibration

most testing has used artificially prepared mixtures

Question 4: How does the changing grading of a soil affect its mechanical behaviour?

University of

hypothesis

- erosion removes finer particles
- grading becomes narrower
- removal of particles reduces density
- narrowing of grading changes asymptotic critical states
- proximity to critical state described by state parameter
- state parameter controls response
- Severn-Trent sand model built around critical states

experimental evidence?

- mixtures of sand (silica) and salt (NaCl)
- oedometer tests
- dissolve salt while mixture under stress
- (tests by John McDougall)

sand and salt: oedometer (McDougall)

- dissolve salt under stress
- removal of salt increases specific volume (reduces density)
- resulting structure unstable volumetric compression

DUNDEE

effect of removal of particles

creates increased specific volume

subsequent/consequent grain rearrangement and skeleton strains

DUNDEE

sand and salt: oedometer (McDougall)

subsequent

- dissolve salt under stress
- removal of salt increases specific volume (reduces density)
- resulting structure unstable volumetric compression

DEM: removal of particles: gradings

- gradings used for discrete element modelling (solid curves)
- grading reached by removal of particles from initial grading with $R_D=10$ (dotted curve)

DEM: removal of particles: deformations

- fine particles plucked out by 'deus ex machina'
- initial grading $R_D=10$; mean stress 100kPa; constant stresses
- deformations more contractant than previous shearing

DEM: progressive removal of particles

- deformations more contractant than previous shearing
- require deformation mechanism that triggers both volumetric and distortional strains

modelling proposals

- characterisation of grading
- link between grading and particle removal
- link between grading and critical states
- underpinning constitutive model for distortional response
- assumption concerning change of specific volume resulting from erosion (destabilisation)

grading state index I_G

- I_G = area ABC/area ABD (current and limiting gradings)
- limiting grading might be fractal (Appolonian)...
- ...scaling factor for calculation of I_G (area ABD = B)
- (other definitions possible)
- for linear grading $I_G = [\ln (d_{max}/d_{min})]/2B$

particle removal and specific volume

- removal of material creates void space and reduces volume of solid
- $v = (V_v + V_s)/V_s$
- $\delta v^r/v = \delta V_s/V_s$
- ullet particle removal also changes grading state index I_G

particle removal and grading

- assume analytical (linear) grading
- $F = \ln(d/d_{min0}) / \ln(d_{max}/d_{min0}) = (V_s)_{d < d} / (V_s)_{d < d_{max}} =$ $(V_s)_{d < d}/V_{s0}$
- removing smallest fraction truncates grading

particle removal and grading

particle diameter: d (log scale)

- remove δV_s of original total solid volume V_{s0} between F=0 and $F=\delta F=\delta V_s/V_{s0}=(\delta v^r/v)(V_s/V_{s0})$
- modifies smallest size $\delta d_{min} = d_{min} \delta F \ln(d_{max}/d_{min0})$
- $V_s/V_{s0} = \ln(d_{max}/d_{min})/\ln(d_{max}/d_{min0})$
- geometry of link between change in d_{min} and δV_s

particle removal and grading

- linear distribution $I_G = [\ln d_{max}/d_{min}]/2B$
- $\delta I_G = -[\delta d_{min}/2Bd_{min}] = -[\delta F/2B] \ln[d_{max}/d_{min0}] = -[\delta v^r/2Bv] \ln[d_{max}/d_{min}] = -I_G[\delta v^r/v]$
- propose general link $\delta I_G = -k_G I_G [\delta v^r/v]$
- k_G of order 1

Severn-Trent sand model

DUNDEE

critical state and isotropic compression lines

$$v_c = \breve{v} + (\hat{v} - \breve{v}) \exp \left[-(p'/p_{cs})^{\beta} \right]$$

ensure realistic values at low and high stress

DEM: grading and critcal states

- broadening grading lowers critical state line
- broader gradings pack more efficiently

critical state surface

- specific volume as combined function of grading I_G and mean stress p'
- critical state line changes as particles removed

DUNDEE

modelling particle removal

- particle removal changes volume
- change of grading changes critical state line
- change of state parameter?
- change of state parameter changes available strength
- stresses constant but mobilised strength changes
- distortional and volumetric strains from distortional mechanism

DUNDEE

effect of particle removal

- volume increase from particle removal δv^r
- rise of critical state line δv_{cs}
- volume decrease from destabilisation δv^{pr}

changes of volume and state parameter

- 'participation function' $\delta v^{pr} = f(\eta)(\delta v^r \delta v_{cs})$
- $f(\eta) = 1$, $\delta \psi = 0$; no change in mobilised strength

changes of volume and state parameter

- 'participation function' $\delta v^{pr} = f(\eta)(\delta v^r \delta v_{cs})$
- $f(\eta) < 1$, $\delta \psi > 0$ and mobilised strength increases

volume change

- volume decrease following particle removal $\delta v^{pr} = f(\eta)(\delta v^r \delta v_{cs})$
- two components: $\delta v^{pr} = \delta v_1^{pr} + \delta v_2^{pr}$

volumetric strains

volume decrease from increased mobilised strength

$$\delta v_1^{pr} = v\delta\epsilon_p^p = vA[(1 - k_D\psi)M - \eta]\delta\epsilon_q^p = vA[(1 - k_D\psi)M - \eta]ak_R\eta\delta\psi/(\eta_p - \eta)^2$$

stress-dilatancy and hardening relationships

volumetric strains

volume decrease from destabilisation

$$\delta v_2^{pr} = \delta v^{pr} - \delta v_1^{pr} = f(\eta)(\delta v^r - \delta v_{cs}) - \delta v_1^{pr}$$

• justification for participation function $f(\eta)$?

deformation mechanisms

- state parameter ↑; strength ↓; constant stresses; mobilised strength ↑; distortional (and volumetric) strains
- purely volumetric compression strains triggered by particle removal (destabilisation)

peak strengths and state parameter

- peak strength and state parameter
- tests with and without particle removal

- participation function $f(\eta) = 1 0.8\eta/[A(1 k_D\psi)M]$
- linked with stress-dilatancy relationship

- participation function $f(\eta) = 1 0.8\eta/[A(1 k_D\psi)M]$
- linked with stress-dilatancy relationship

- participation function $f(\eta) = 0.5$
- unchanging with stress ratio

- participation function $f(\eta) = 1 \eta/[A(1 k_D\psi)M]$
- linked with mobilisation of current critical state stress ratio

- participation function $f(\eta) = 1 \eta/\eta_p$
- linked with mobilisation of current peak strength

sand and salt (McDougall)

- oedometer: $\delta \epsilon_r = 0$; $\delta \epsilon_p = \delta \epsilon_a$; $\delta \epsilon_q = (2/3) \delta \epsilon_a$
- calculate δv^r ; measure $\delta v \to \delta v^{pr} = \delta v^r \delta v$
- vertical (and radial?) stress constant: no elastic strains
- distortional mechanism: $\delta \epsilon_q \to \delta \psi \to \delta v_{cs}$
- distortional mechanism: $\delta v_1^{pr}/v = D\delta \epsilon_q$; D = dilatancy
- second mechanism: $\delta v_2^{pr} = \delta v^{pr} \delta v_1^{pr}$
- participation function: $f(\eta) = \delta v^{pr}/(\delta v^r \delta v_{cs})$

sand and salt (McDougall)

subsequent

- dissolve salt under stress
- estimate participation function $f(\eta) \approx 0.82$
- single stress state

comments/conclusions

- grading change (crushing/erosion)
- adapt simple model: critical state line: state parameter
- separate loss of material and subsequent response
- missing link: participation function: how much collapse occurs?
- problem of validation data

agglomerated particles: DEM: (Cheng, 2005)

- evolving particle size distribution through breakage of contact bonds within agglomerates
- isotropic compression to 20MPa (negligible change)
- shearing (axial strains indicated)
- d_{max} somewhat constant

pestle and mortar

- compression produces particle breakage ...
- ... but shearing better

ring shear apparatus: Dog's Bay sand

- evolution of particle size distribution: constant after about 730%? (definition of strain in ring shear?)
- double logarithmic axes
- (after Coop et al., 2004)

$I_G \rightarrow 1$ inevitably?

- relative breakage $B_r \propto \Delta I_G$
- different normal stresses
- crushing does not continue indefinitely
- final grading depends on stress level
- Dog's Bay sand: ring shear tests (Coop, 2004)

effect of addition of fine particles?

- ullet effect on e_{max} and e_{min}
- all aspects of behaviour linked with void ratio range affected
- for example: location of critical state line

DEM analyses: different gradings of discs

- $R_D = d_{max}/d_{min}$
- tests with constant grading
- (Muir Wood & Maeda, 2007)

critical state surface

- broader gradings have lower critical state lines
- use grading index as extra dimension
- critical state *surface*: $p': v: I_G$

particle breakage and critical state surface

- loci of end points on critical state surface
- precompression leads to lower critical state specific volume (higher I_G)
- (Cheng)

effect of increasing I_G on response

- lowering of critical state line (first order)
- strength unchanged (first order)
- stiffness unchanged (first order)
- dilatancy unchanged (first order)
- slope of critical state line unchanged (first order)
- few data often from artificial mixtures not naturally crushed or eroded materials

 University of _

precompression histories: A

precompression histories: A, ABA

precompression histories: A, ABA, ACA

precompression histories: A, ABA, ACA, ADA

- precompression histories: A, ABA, ACA, ADA
- precompression increases I_G , reduces peak strength, makes soil feel looser
- increases pore pressure generation ...

