Airport Pavement Design

Workshop & Lectures on Pavement Engineering, Maintenance and Management

References

- Principles of Pavement Design, Yoder and Witczak, 1975
- Advisory Circular AC 150/5320-6D,
 Airport Pavement Design and Evaluation
- Asphalt Institute, Manual Series No.11, Thickness Design: Aspahlt Pavements for Air Carrier Airports

Airport and Highway Pavements

- Load repetitions
- Geometry of pavement
- Distribution of traffic

Affected by pavement width and type of aircraft

Airport and Highway Pavements Comparison

Consideration	Highway	Airport
Rigid pavement	Show pumping	Little or no pumping
Flexible pavement	Serious distress at pavement edges	No serious distress at pavement edges
Load magnitude	Lower	Higher
Load repetitions	Higher	Lower
Design load	9,000 lbs on dual tires 1,000-2,000 trucks per day	100,000 lbs wheel load 20,000-40,000 coverages per life time
Tire pressure	60-90 psi	400 psi (jet aircraft)
Traffic distribution	3-4 ft. from edge	center
Geometry	12-24 ft.	Runway 150-500 ft. wide Taxiway 20-100 ft. wide

Basic types of wheel configuration

Tractor with single t Single axle with dual tires with dual tires (a)

- a) Single trailer-truck unit
- b) Tricycle landing gear with single tires
- c) Twin-tandem landing gear
- d) Double twin-tandem gear

(d)

Double

gears

Several Typical Aircraft

Type of Plane	Max Gross Weight (lb × 10³)	Type of Gear	Main Gear Dimension (in.)	Max Load Each Main Assembly (lb × 10³)	Tire Pressure (psi)
Boeing 707-320C	336.0	Twin-tandem	56 × 34.5	157.0	180
Boeing 707-120B	258.0	Twin-tandem	56×34	120.0	170
Boeing 737	111.0	Twin	30.5	25.8	148
Boeing 727-100	170.0	Twin	34.0	76.9	166
Boeing 747	713.0	Double twin- tandem	58×44	166.5	204
Convair Cv 880	185.0	Twin-tandem	45×21.5	87.0	150
Lockheed L1011-I McDonnel-	411.0	Twin-tandem	70 × 52	195.0	175
Douglas DC10-10 McDonnel-	413.0	Twin-tandem	54 × 64	194.0	175
Douglas DC 8-43 McDonnel-	318.0	Twin-tandem	55 × 30	148.0	177
Douglas DC 9-15	91.5	Twin	24	42.4	127
Concorde	388.0	Twin-tandem	66×26.4	184.3	184
BAC 1-11-500	100.0	Twin	21	47.5	174

Aircraft Wander on Pavement Damage

Flexible Pavement Design

Flexible Airport Pavement Design

- a) Corps of Engineers-CBR analysis
- b) Canadian Department of Transportation (CDOT)
- c) Federal Aviation Administration (FAA) method
- d) Asphalt Institute method

a) Corps of Engineers (CBR) Method

Figure 14.6. Flexible-pavement design curves for medium-load pavement—twin wheels, 37-inch spacing, $A_c = 267$ in.² (From TM 5-824-2/AFM 88-6, Chapter 2.)

b) CDOT Method

• Investigate load-carrying capacity by plate-bearing tests.

• N.McLeod developed emprirical based thickness design equation.

• Effects of frost are accounted.

Value of subgrade support (pounds) 30" diameter plate -0.5" deflection -10 repetitions of load

Figure 14.23. Flexible-pavement thickness chart. (From McLeod, Proceedings, AAPT, 1956.)

c) FAA Method

- Advisory Circular AC 150/5320-6D,
 Airport Pavement Design and Evaluation
- Field performance data correlated to soil classification
- Applicable to aircraft with gross weight in excess of 30,000 lbs (13,000 kg).

Aircraft Considerations

- Load (95% main landing gear, 5% nose gear)
- Landing gear type and geometry
 - Single gear aircraft
 - Dual gear aircraft
 - Dual tandem gear aircraft
 - Wide body aircraft (B-747, B-767, DC-10, L-1011)
- Tire pressure: 75-200 psi (515-1,380 kPa)
- Traffic Volume

AC 150/5320-6D

The standard CBR procedure was originally developed for a single wheel load and was "expanded" in 1945 to address dual wheel gears and dual tandem gears by the "Equivalent Single Wheel Load" (ESWL)

Equivalent Single Wheel Load (ESWL)

AC 150/5320-6D

The landing gear for the B-777 airplane was a unique configuration which did not appear to be correctly represented by the CBR design procedure

It was felt that the CBR procedure was unduly conservative for this gear configuration

16

Increased Loading Gear Complexity

Aircraft Size

Gross Aircraft Weight

Gross Aircraft Weight

Equivalent Single Wheel Load

New Procedure Needed

For unique pavement loading characteristics of new aircraft

→ Boeing B-777 or Airbus A380

New Design Procedures

- In the early 1990's, FAA pursues new pavement design procedures to address complex gear configurations and increases in aircraft weight
- In October 1995, FAA published AC 150/5320-16, Airport Pavement Design for the Boeing 777 Airplane.

FAA Design Procedure

- Select design aircraft which procuces the greatest pavement thickness
- Forecast number of annual departures for that aircraft
- Convert other aircrafts to the same landing gear type as the design aircraft

Find Equivalent Annual Departures by Design Aircraft

Conversion factors to convert from one landing gear type to another

To Convert From	То	Multiply Departures by
single wheel	dual wheel	0.8
single wheel	dual tandem	0.5
dual wheel	dual tandem	0.6
double dual tandem	dual tandem	1.0
dual tandem	single wheel	2.0
dual tandem	dual wheel	1.7
dual wheel	single wheel	1.3
double dual tandem	dual wheel	1.7

Conversion to Equivalent Annual Departure of Design Aircraft

$$\log R_1 = \log R_2 \times (\frac{W_2}{W_1})^{\frac{1}{2}}$$

 R_1 = equivalent annual departures by the design aircraft R_2 = annual departures expressed in design aircraft landing gear

W₁= wheel load of the design aircraft

W₂= wheel load of the aircraft in question

Treated each wide body aircraft as 300,000 lbs dual tandem aircraft

Example

727-200 requires the greatest pavement thickness and thus is the design aircraft

Aircraft	Gear type	Avg. ann depart.	Max. takeoff Weight (lbs)	Equiv. dual .gear depart	l		Wheel load Design aircraft (lbs)	depart. design	
727-100	Dual	3760	160,000	3760	38,0	000	45,240	1,891	
727-200	Dual	9080	190,500	9080	45,2	240	45,240	9,080	
707-320B	Dual tandem	3050	327,000	5185	38,	330	45,240	2,764	
DC-9-30	Dual	5800	108,000	5800	25,6	650	45,240	682	
CV-880	Dual tandem	400	184,500	680	21,	910	45,240	94	
737-200	dual	2650	115,500	2650	27,4	130	45,240	463	
L-1011-100	Dual tandem	1710	450,000	2907	_ 35,6	625	45,240	1,184	
747-100	Double dual	85	700,000	145	35,6	625	45,240	83	
	tandem							†	
	Total = 16,241								
$\log R_1 = \log(145) \cdot \sqrt{-}$							$g(145) \cdot \sqrt{\frac{35625}{45240}}$		

nal design: 16,241 annual departures of a dual wheel aircraft weighing 190,500lbs

Typical Design Section

FAA: Flexible Pavement Design

- HMA Surfacing: Item P-401
- Base Course:
 - Minimum CBR value of 80
 - Item P-208 Aggregate Base Course
 - Item P-209 Crushed Aggregate Base Course
 - Item P-211 Lime Rock Base Course
 - Item P-304 Cement Treated Base Course
 - Item P-306 Econocrete Subbase Course
 - Item P-401 Plant Mix Bituminous Pavements

FAA: Flexible Pavement Design

• Subbase:

- Minimum CBR value of 20
- Item P-154 Subbase Course
- Item P-210 Caliche Base Course
- Item P-212 Shell Base Course
- Item P-213 Sand Clay Base Course
- Item P-301 Soil Cement Base Course

Items P-213 and P-301 are not recommended where frost penetration into the subbaseis anticipated

Subgrade Compaction Requirement

DESIGN	Gross	NON-COHESIVE SOILS					COHESIV	/E SOILS	
AIRCRAFT	Weight	Depth of Compaction In.			1	Depth of Co	mpaction In		
	lbs.								
		100%	95%	90%	85%	95%	ℯ ₹ 90%	85%	80%
Single Wheel	30,000	8	8-18	18-32	32-44	6	6-9	9-12	12-17
	50,000	10	10-24	24-36	36-48	6	6-9	9-16	16-20
	75,000	12	12-30	30-40	40-52	6	6-12	12-19	19-25
Dual Wheel	50,000	12	12-28	28-38	38-50	6	6-10	10-17	17-22
(incls. C-130)	100,000	17	17-30	30-42	42-55	6	6-12	12-19	19-25
	150,000	19	19-32	32-46	46-60	7	7-14	14-21	21-28
1	200,000	21	21-37	37-53	53-69	9	8-16	16-24	24-32
Dual Tand.	100,000	14	14-26	26-38	38-49	6	6-10	10-17	17-22
(incls. 757,	200,000	17	17-30	30-43	43-56	6	6-12	12-18	18-26
767,	300,000	20	20-34	34-48	48-63	7	7-14	14-22	22-29
A-300)	400,000	23	23-41	41-59	59-76	9	9-18	18-27	27-36
DC-10	400,000	21	21-36	36-55	55-70	8	8-15	15-20	20-28
L1011	600,000	23	23-41	41-59	59-76	9	9-18	18-27	27-36
747	800,000	23	23-41	41-59	59-76	9	9-18	18-27	27-36

Selection of Design CBR Value

- Rule of thumb: design CBR value should be equal to or less than 85% of all subgrade CBR values
- Corresponds to a design value of one standard deviation below mean value

Design Curves

Single Wheel Gear

Design Curves

Dual Wheel Gear

Design Curves

Dual Tandem Gear

Minimum Thicknesses of Base Course

-			oad Range			
Design		Minimum Base				
Aircraft		Course Thickness				
	lbs. (kg)					
			(kg)	'	in.	(mm)
Single Wheel	30,000 -	50,000	(13 600 -	22 700)	4	(100)
	50,000 -	75,000	(22 700 -	34 000)	6	(150)
Dual	50,000 -	100,000	(22 700 -	45 000)	6	(150)
Wheel	100,000 -	200,000	(45 000 -	90 700)	8	(200)
Dual	100,000 -	250,000	(45 000 -	113 400)	6	(150)
Tandem	250,000 -	400,000	(113 400 -	181 000)	8	(200)
757	200,000 -	400,000	(90 700 -	181 000)	6	(150)
767				·		
DC-10	400,000 -	600,000	(181 000 -	272 000)	8	(200)
L1011				ŕ		`
B-747	400,000 -	600,000	(181 000 -	272 000)	6	(150)
	600,000 -	850,000	(272 000 -	385 700)	8	(200)
C-130	75,000 -	125,000	(34 000 -	56 700)	4	(100)
	125,000 -	175,000	(56 700 -	79 400)	6	(150)

Pavement Thickness for High Departure Levels

Annual Departure Level	Percent of 25,000 Departure Thickness
50,000	104
100,000	108
150,000	110
200,000	112

1-inch of thickness increase should be HMA surfacing

he remaining thickness increases should be proportioned between base and subbase

Critical and Noncritical Areas

- Total critical pavement thickness = T
- Noncritical pavement thickness (for base and subbase only) =
 0.9T
- For variable section of the transition section and thinned edge, the reduction applies only to the base course
- The 0.7T thickness for base shall be the minimum permitted

Design Example

- Flexible airport pavement is to be designed for a dual gear aircraft
- Gross weight = 75,000 lbs (34,000 kg)
- Annual equivalent departures of design aircraft = 6,000
- CBR for subbase = 20
- CBR for subgrade = 6

Find total pavement thickness

- Use subgrade CBR to find total pavement thickness
- 23 in.

Find subbase thickness

- Use subbase CBR to find combined thickness of HMA and base course needed over a 20 CBR subbase is 9.2 in.
- Subbase = 23-9.2 = 13.8 in. (14 in.)

Design Pavement Thicknesses

- HMA Surface (critical area) = 4 in.
- Base course = 9.2-4 = 5.2 in. (6 in.)
- Subbase course = 14 in.

d) Al Method

- Asphalt Institute, Manual Series No.11, Thickness Design: Aspahlt Pavements for Air Carrier Airports
- Full-depth asphalt pavement
- For aircraft > 270 kN (60,000 lbs) gross weight

Al Method: Design Principles

- Multi-layered elastic system analysis
- Two critical elastic strains
 - Horizontal tensile strain (\mathcal{E}_t) at bottom of asphalt concrete
 - Verticle compressive strain (\mathcal{E}_c) at top of subgrade
- The greater of thicknesses is selected as final design thickness.
- E* of asphalt concrete depends on type of mix, temperature, and rate of loading
 - Design frequency of 2 Hz. For dual tandem aircraft gear at taxiing speed of 16-32 km/hr (10-20 mph)

Location and direction of tensile and compressive strains in Full-Depth asphalt pavement

ASPHALT CONCRETE

Maximum horizontal tensile strain

SUBGRADE

Maximum vertical compressive strain

Al Method: Design Principles

- Design location taxiway
 - More aircraft movements
 - Greater aircraft weights at departure
 - Slower aircraft speeds
 - Greater degree of traffic channelization
- Lateral effect
 - Taxiway/runway receive greater number of stress repetitions nearer central portion of pavement than at edges
- Cumulative strain repetitions
 - Function of aircraft type, gear load, number of aircraft passes, lateral&transverse wander characteristics

Al Method: Design Subgrade

- Resilient modulus (M_r)
 - Direct measurement by M_r test
 - From CBR test

```
M_{r} (Mpa) = 10.3 CBR or
M_{r} (psi) = 1,500 CBR
```

• From Resistance Value (R) test

```
M_r (Mpa) = 8.0+3.8 (R-value) or M_r (psi) = 1155+555 (R-value)
```

• From plate bearing test

Al Method: Design Subgrade M_r

- \bullet Design subgrade resilient modulus equal to or greater than 85% of all $M_{\rm r}$ values
- <u>Example:</u> Find design subgrade resilient modulus from the results of 7 tests from runway section site

Test V	alues	Number equal	Percent equal to	
MPa	Psi	to or greater than	or greater than	
106.9	15,500	1	(1/7)100=14	
80.0	11,600	2	(2/7)100=29	
68.3	9,900			
68.3	9,900	4	(4/7)100=57	
67.6	9,800	5	(5/7)100=71	
58.6	8,500	6	(6/7)100=86	
44.8	6,500	7	(7/7)100=100	

Al Method: Design Subgrade M_r

• Design subgrade value at 85 percent = 58.6 Mpa (8,500 psi)

Al Method: Environmental Effects

- Moisture
- Volume change
- Frost