AASHTO and AUSTROADS Pavement Design

Workshop & Lectures on Pavement Engineering, Maintenance and Management

References

- AASHTO Design Guide for Design of Pavement Structures, 1993
- Pavement Analysis and Design, Y.H. Huang, 2004
- AUSTROADS, Pavement Design: a Guide to the Structural Design of Road Pavements, 2004

2

Pre-Road Test Design Methods

- Pre 1920s
- Experience and soil mechanics
- · Goal: Protect the subgrade

Result: Same pavement thickness despite changing soil conditions

Types of Design Methods

- Empirical
- Limiting Shear Failure
- Limiting Deflection
- Regression Based on Road Tests
- Mechanistic-Empirical Methods

Road Test Regression Methods

- Well controlled experiment
- Use regression techniques to develop performance prediction equations
- Widely used
- Strictly limited to conditions of road test

AASHTO Flexible Pavement Design

AASHTO Design Guide

- Soil support replaced with resilient modulus
- Design reliability
- Resilient modulus to select layer coefficients
- Drainage considered
- Environmental factors such as frost heave, swelling soils thaw weakening
- Life cycle costing to evaluate alternatives

AASHTO Design Considerations

Expansion of the guide included:

- Incorporation of **Reliability**
- Resilient Modulus replacement of the Soil Support Value
- Layer Coefficients based on Resilient Modulus
- Incorporation of **Drainage**

Design Equation for AASHTO Flexible Pavements

1986 Revision (1993 equation is the same):

$$\log W_{18} = Z_R S_0 + 9.36 \log(SN + 1) - 0.20 + \frac{\log(\frac{42 - p_1}{42 - 15})}{0.4 + \frac{1094}{(SN + 1)^{5.19}}} + 2.32 \log M_R - 8.07$$

where:

 W_{18} = Total Life Flexible ESAL's

 Z_R = normal deviate for reliability R

S₀ = standard deviation SN = Structural Number

p_t = Terminal Serviceability Index

M_R = effective roadbed soil resilient modulus

9

AASHTO '93 Flexible Pavement Design Nomograph ***CHANGE STREET TO STREET TO

AASHTO Flexible Pavement Design Variables

- Time (Design Life)
- Traffic (Total Design Life ESAL)
- Reliability ("Safety Factor")
- **Serviceability** (ΔPSI)
- Soil Resilient Modulus (Seasonal Variation)
- Structural Number (SN)

AASHTO Time (Design Life)

Performance Period

- Time to first rehab or time between rehabs
 - Use practical performance period for given pavement type

Analysis Period

Life of pavement, including rehabilitations

TABLE 11.13 Guidelines for Length of Analysis Period					
Highway conditions	Analysis period (years)				
High-volume urban	30-50				
High-volume rural	20-50				
Low-volume paved	15-25				
Low-volume aggregate surface	10-20				

AASHTO Traffic

- Total Design Life ESAL
- The cumulative expected ESAL.

Total Design Life ESAL Calculation

$$ESAL = (\sum_{i=1}^{m} p_i F_i) (ADT)_0(T) (A) (G) (D) (L) (365) (Y)$$

 $\boldsymbol{p}_{i}\!\!:\,$ percentage of total repetitions for the i^{th} group

F_i: EALF for the ith load group

(ADT)₀: average daily traffic at the start of the design period

T: percentage of trucks in the ADT

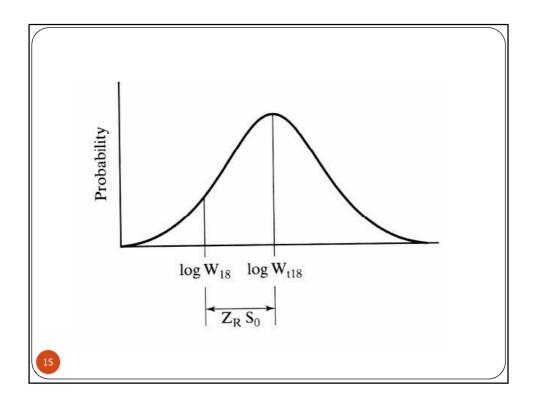
A: average number of axles per truck

G: growth factor

D: directional distribution factor

L: lane distribution factor

Y: design period in years


AASHTO Reliability ("Safety Factor")

• Incorporates some degree of certainty into the design process to ensure that the various design alternatives will last the analysis period.

Functional		mended reliability
Classification	Urban	Rural
Interstate / Freeways	85-99.9	80-99.9
Principal Arterials	80-99	75-95
Collectors	80-95	75-95
Locals	50-80	50-80

Suggested Standard Deviation $(S_0) = 0.45$

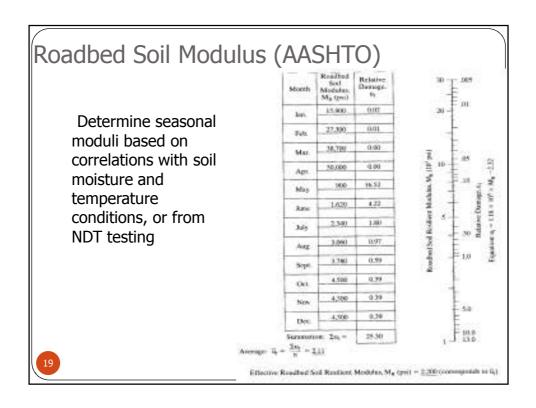
Reliability	Standard Normal
(%)	Deviate(Z _R)
50	0.000
60	-0.253
70	-0.524
75	-0.674
80	-0.841
85	-1.037
90	-1.282
95	-1.645
98	-2.054
99	-2.327
99.9	-3.090
99.99	-3.750

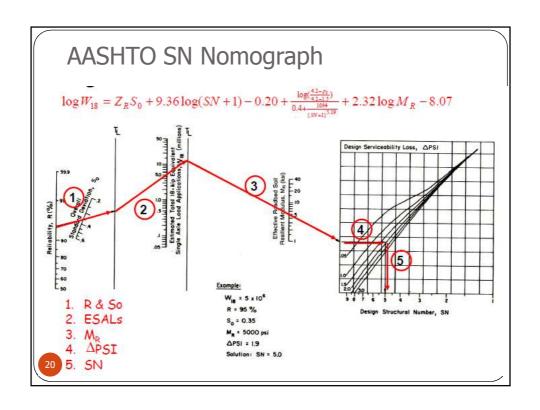
AASHTO Serviceability (ΔPSI)

- PSI describing physical characteristics of pavements which can be measured objectively and then related to subjective evaluations of comfort
 - ~ roughness, cracking, patching, rut depth
- ΔPSI=PSI_i − PSI_t
 - PSI_i: initial serviceability (immediately after construction) ~4.2
 - PSI_t: terminal serviceability (lowest acceptable level before remedial action must be taken) dependent on roadway classification, typically 2.5 for highway
- $\Delta PSI = f(traffic, environment)$

Loss of Serviceability

- The total loss of serviceability can be computed with the following equation:
 - $\Delta PSI = \Delta PSI_{TRAFFIC} + \Delta PSI_{SWELL/FROST\ HEAVE}$ where
 - ΔPSI = total loss in serviceability
 - $\Delta PSI_{TRAFFIC}$ = serviceability loss due to ESALs
 - ΔPSI_{SWELL/FROST HEAVE} = serviceability loss due to swelling and/or frost heave of roadbed soil
- The effects of frost heave and swelling can be reduced by replacement or treatment of soil.


Roadbed Soil Resilient Modulus (AASHTO)


 The effective roadbed soil resilient modulus is an equivalent modulus that would result in the same damage if seasonal modulus values were actually used.

$$\begin{split} 1.18 \times 10^8 M_R^{-2.32} &= \frac{1}{n} \sum_{i=1}^n \left(1.18 \times 10^8 M_{R_i}^{-2.32} \right) \\ \text{Relative damage } u_{f^i} \\ u_f &= 1.18 \times 10^8 M_R^{-2.32} = \frac{1}{n} \sum_{i=1}^n \left(1.18 \times 10^8 M_{R_i}^{-2.32} \right) = \frac{\sum u_{f_i}}{n} \\ \overline{u_f} &= \frac{\sum u_f}{n} \end{split}$$

 Take weighted average over seasons (Seasonal Variation)

Structural Number (SN)

$$SN = a_1D_1 + a_2D_2m_2 + a_3D_3m_3$$

- Layer Coefficients (a_i)
- Drainage Coefficients (m_i)
- Minimum Layer Thicknesses (**D**_i)

AASHTO Structural Number

- SN
 - "An abstract number expressing the structural strength of a pavement required for given combinations of soil support, total traffic in terms of ESALs, terminal serviceability and environment."
 - $SN = a_1D_1 + a_2m_2D_2 + ... + a_nm_nD_n$

Layer Coefficients (a_i)

Asphalt Concrete Surface Course:

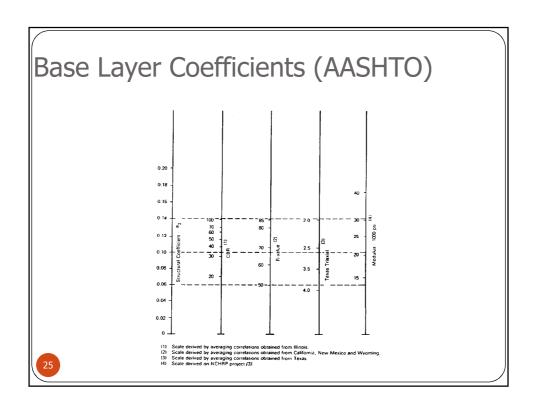
$$a_1 = 0.44$$

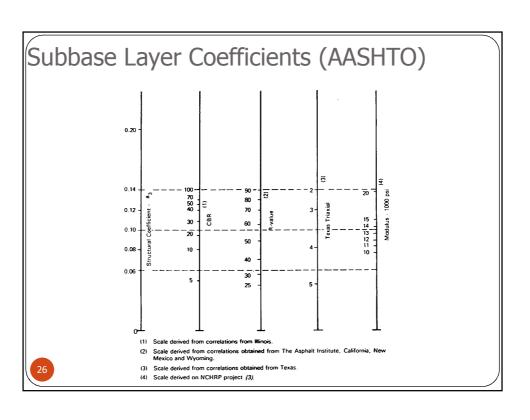
Untreated and Stabilized Base Courses:

$$a_2 = 0.249(\log E_2) - 0.977$$

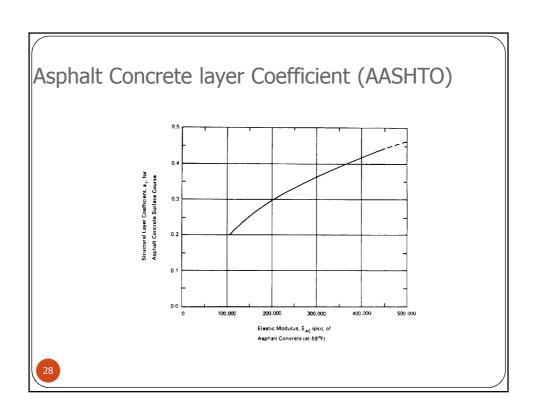
Granular Subbase Course:

$$a_3 = 0.227(\log E_3) - 0.839$$


where:


$$E_i = K_1 \theta_2^K$$

Base and Subbase Modulus (AASHTO)


- May be determined by variety of methods
 - CBR
 - R-Value
 - Triaxial
 - Resilient Modulus
- Capture seasonal variation
- Convert to layer coefficient
 - a_i

Asphalt Concrete Modulus

- Function of temperature
- Account for seasonal changes
- Correlate to layer coefficient
 - a_i

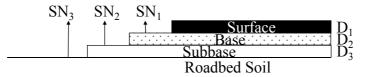
AASHTO Drainage Coefficients (m_i)

- The quality of drainage is measured by the length of time for water to be removed from bases and subbases and depends primarily on their permeability.
- The percentage of time during which the pavement structure is exposed to moisture levels approaching saturation depends on the average yearly rainfall and the prevailing drainage conditions

AASHTO Drainage Coefficients (m_i)

TABLE 11.20 RECOMMENDED DRAINAGE COEFFICIENTS FOR UNTREATED BASES

AND SUBBASES IN FLEXIBLE PAVEMENTS Percentage of time pavement structure is exposed to moisture levels approaching saturation Quality of drainage Greater than Less than Water removed 1-5% 5-25% Rating within 1% 1.35-1.30 1.30-1.20 1.20 Excellent 2 hours 1.40-1.35 1.25-1.15 1.15-1.00 1.00 1 day 1.35-1.25 1,25-1.15 0.80 1.15-1.05 1.00-0.80 Fair I week 1.15-1.05 1.05-0.80 0.80 - 0.600.60 Poor I month 1.05-0.95 0.95-0.75 0.75 - 0.400.40 Very poor Never drain Source. After AASHTO (1986).



Design Procedure

Determine SN required above each layer

Find thickness to satisfy SN above each layer

AASHTO Layer Thickness Determination

Use E2 in Nomograph...Solve for D₁

$$SN_1 = a_1D_1$$

Use E3 in Nomograph...Solve for D₂

$$SN_2 = a_1D_1 + a_2m_2D_2$$

Use M_R in Nomograph...Solve for D₃

$$SN_3 = a_1D_1 + a_2m_2D_2 + a_3m_3D_3$$

32

AASHTO Rigid Pavement Design

AASHTO Rigid Pavement Design Variables

- Thickness
- Serviceability (p_o, p_t)
- Traffic (ESALs, E-18s)
- Load Transfer (J)
- Concrete Properties (S'_c, E_c)
- Subgrade Properties (k)
- Drainage (C_d)
- Reliability (R, s_o)

Design Equation for AASHTO Rigid Pavements

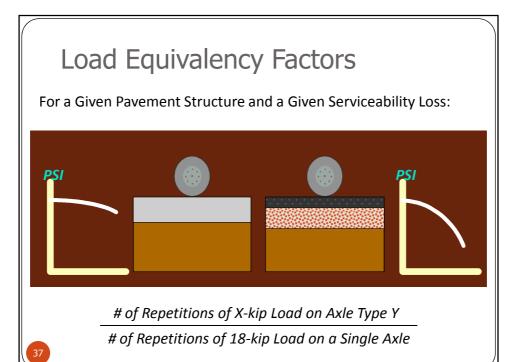
$$Log(E-18) = Z_R *s_o + 7.35 *Log(D + 1) - 0.06 + \left[\frac{Log\left[\frac{\Delta PSI}{4.5 - 1.5}\right]}{1 + \frac{1.624 *10^7}{(D + 1)^{8.46}}} \right]$$

+
$$(4.22 - 0.32p_t)*Log$$

$$\frac{S'_c*C_d*[D^{0.75} - 1.132]}{215.63*J*[D^{0.75} - \frac{18.42}{(E_c/k)^{0.25}}]}$$

AASHTO Design Serviceability

Initial Serviceability, p_o


The condition immediately after Construction

Concrete = 4.5

Asphalt = 4.2

Using current construction techniques, concrete roads can have p_o = 4.7 to 4.8

AASHTO Design Load Equivalency Factors

Concrete Response

Asphalt Response

Since pavement responses are different, the equivalency factors are different. When multiplying the actual traffic by the different equivalencies, you get different E-18's

AASHTO Design Traffic

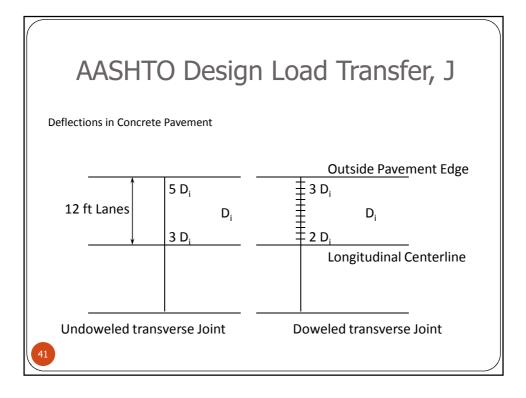
ESALS GENERATED BY DIFFERENT VEHICLES/DAY

VEHICLE	NUMBER	RIGID ESALs	FLEXIBLE ESALs
Single Units 2 Axle	20	6.38	6.11
Busses	5	13.55	8.73
Panel Trucks	10	10.89	11.11
Semi-tractor Trailer 3 Axles	10	20.06	13.41
Semi-tractor Trailer 4 Axles	15	39.43	29.88
Semi-tractor Trailer 5 Axles	15	57.33	36.87
Automobile, Pickup, Van	425	1.88	2.25
Total	500	149.52	108.36

AASHTO Design Load Transfer

- The Load Transfer Coefficient, J-factor, accounts for <u>stress</u> load transfer across a joint or crack.
 - Used to minimize corner cracking Dowels

Yes - Plain or Mesh Reinforced


No - Plain Undoweled

Continuously Reinforced

Tied Shoulder or Curb and Gutter

- Does not control or account for faulting
 - Does effect deflections.

AASHTO Design Load Transfer, J

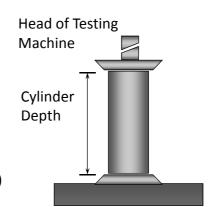
Load Transfer Coefficients for Typical Designs

	Edge Support						
ESALs (millions)	Doweled and mesh reinforced			egate rlock		nously orced	Pavement class
	No	Yes	No	Yes	No	Yes	
under 0.3	3.2	2.7	3.2	2.8			Local
0.3 - 1	3.2	2.7	3.4	3.0			Streets &
1 - 3	3.2	2.7	3.6	3.1			Roads
3 - 10	3.2	2.7	3.8	3.2	2.9	2.5	Arterials
10 - 30	3.2	2.7	4.1	3.4	3.0	2.6	and
over 30	3.2	2.7	4.3	3.6	3.1	2.6	Highways

21

AASHTO Design Concrete Properties

- Two concrete properties that influence pavement performance
 - Flexural Strength (Modulus of Rupture), S'_c
 3rd-Point Loading
 - Modulus of Elasticity, E_c


AASHTO Design Concrete Properties Flexural Strength (S'_c) Determination Third-point Loading Head of Testing Machine d=L/3 Span Length = L ABSHTO Design Concrete Properties Center-point Loading L/2 Span Length = L

AASHTO Design Concrete Properties

Compressive Strength f'c

$$S'_{c} = 8-10 \sqrt{f'_{c}}$$

 f'_c = Compressive Strength (psi)
 S'_c = Flexural Strength (psi)

AASHTO Design Concrete Properties

Comparison of $f'_c \& S'_c$

Compressive	Third Point	Center Point
Strength	Flexural Strength	Flexural Strength
3000	492	579
3500	532	626
4000	569	669
4500	603	710
5000	636	748
5500	667	785
6000	697	820

Note: Third point ≈ Center point * 0.85

AASHTO Design Concrete Properties

- Modulus of Elasticity
- $E_c = 6750 \, S'_c$
- $E_c = 57,000 (f'_c)^{0.5}$

Flexural Strength	Modulus of Elasticity
600 psi	3,900,000 psi
650 psi	4,200,000 psi
700 psi	4,600,000 psi

AASHTO Design Concrete Properties

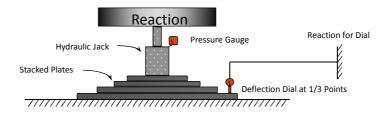
• Typical Standard Deviation

Ready-mix Concrete: 7-13%Central-mix Concrete: 5-12%

• Standard Normal Deviate

Reliability (R)	Z_R
50	-0.000
75	-0.674
90	-1.282
95	-1.645
99	-2.327

48


AASHTO Design Subgrade Properties

- Two are two subgrade properties that influence concrete pavement design
 - Modulus of Subgrade Reaction, k-value
 - Loss of Support

AASHTO Design Subgrade Properties

• Modulus of Subgrade Reaction, k

k (psi/in) = unit load on plate / plate deflection

AASHTO Design k-Value Determination

- \bullet AASHTO uses the k-value for design, but basis the soils characterization on the Resilient Modulus, ${\rm M}_{\rm R}.$
- Determine M_R
 AASHTO test Method T 274
 Correlations to CBR or R-values
- 2. Convert M_R to K-value

AASHTO Design k-Value Determination

- After determining the Resilient Modulus, M_R, convert M_R to k-value for design.
- No subbase $K (psi/in) = M_R/19.4$
- Subbase
 Fig. 3.3 from Part II

AASHTO Design Loss of Support

- Accounts for the expected loss of support by subbase / subgrade erosion and differential movements.
- Decreases the effective or composite k-value for a subbase / subgrade based on the size of void that may develop beneath the slab.
- LOS = 0 models the soil conditions at the AASHO road test.

AASHTO Design Loss of Support

	Historical			AASHTO k-value		
TYPE	Modulus	k-value	LOS=0	LOS=1	LOS=2	LOS=3
Silts & Clays	3,000	100			22	11
Granular	30,000	150-250		79	29	13
Bituminous Treated	100,000	350-450	300	93		
Cement Treated	1,000,000	400-500	445	128		

AASHTO Design Subgrade Strength

• Typical Soil Relationships

Soil Type	Strength	k-value (psi / in.)	Mr (psi)	CBR
Silts / Clays	Very Low	50-100	1000-1900	<3
Fine grained	Low	100-150	1900-2900	3-5.5
Sands	Medium	150-220	2900-4300	5.5-12
Gravely soils	High	220-250+	4300-4850	>12

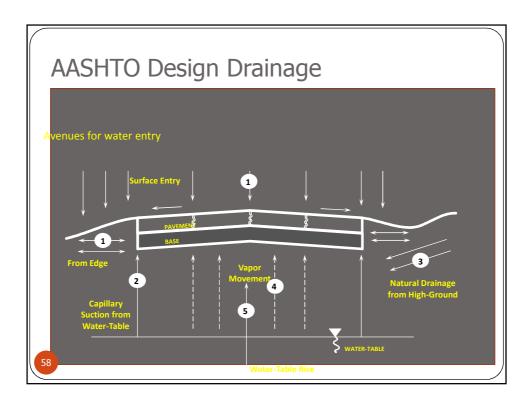
AASHTO Design Subgrade Strength

If you do not know the structural coefficient of a subbase layer use:

$$a_{\text{granular}} = 0.249 (log \ E_{\text{granular}}) - 0.977$$

$$a_{\text{granular}} = 0.0045 \ \sqrt[3]{E_{\text{granular}}}$$

For lime-modified soil example:


$$a_{granular} = 0.249[log (30,000)] - 0.977 = 0.138$$

 $a_{granular} = 0.0045 \sqrt[3]{30,000} = 0.139$

AASHTO Design Drainage, C_d

- Effects of Water Trapped within the Pavement Structure
 - 1. Reduced Strength of Unbound Granular Materials
 - 2. Reduced Strength of Subgrade Soils
 - 3. Pumping of fines
 - 4. Differential Heaving of Swelling Soils
 - 5. Frost Heave

AASHTO Design Drainage

Recommended Values for Drainage Coefficient

	Percent of Time Pavement Structure is Exposed to Moisture Levels Approaching Saturation				
Quality of Drainage	Less than 1%	1 - 5%	5 - 25%	Greater than 25%	
Excellent Good Fair Poor Very Poor	1.25 - 1.20 1.20 - 1.15 1.15 - 1.10 1.10 - 1.00 1.00 - 0.90	1.20 - 1.15 1.15 - 1.10 1.10 - 1.00 1.00 - 0.90 0.90 - 0.80	1.15 - 1.10 1.10 - 1.00 1.00 - 0.90 0.90 - 0.80 0.80 - 0.70	1.10 1.00 0.90 0.80 0.70	

AASHTO Design Reliability

- The statistical factors that influence pavement performance are:
 - RELIABILITY, R The statistical probability that a pavement will meet its design life.
 - STANDARD DEVIATION, $\rm s_o$ -The amount of statistical error present in the design equations resulting from variability in materials, construction, traffic, etc.

AASHTO Design Reliability

Recommended Reliability Values for Design

	Recommended Level of Reliability	
Functional Classification	Urban	Rural
Interstate / Freeways	85-99.9	80-99.9
Principal Arteials	80-99	75-99
Collectors	80-95	75-95
Local	50-80	50-80

AASHTO Design Reliability

Recommended \mathbf{s}_{o} Values for Design

	Concrete	Asphalt
Ranges	0.30 - 0.40	0.40 - 0.50
Use		
New Construction	n 0.35	0.45
Overlays	0.39	0.49

Advantages & Limitations of AASHTO Method

- Advantages
 - Straightforward
 - Inclusion of reliability and standard deviation
 - Can be applied to a variety of traffic, climate, material condition
- Limitations
 - Empirical developed to specific condition over a short period of time
 - The use of effective resilient modulus and layer coefficient concept
 - ESAL (LEF): based on limited inspection
 - · Limited materials and subgrade

