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     Potential benefits of Subsurface Drainage for Track 

on Soft Formation clays 
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Drain Installation Patterns 
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Theory of Radial Consolidation 
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u  - Excess pore water pressure at time t 

ch - Coefficient of consolidation for radial consolidation 

cv  - Coefficient of consolidation for vertical consolidation 

Uv - Average degree of consolidation due to vertical flow 

Ur - Average degree of consolidation due to radial flow 

 

The overall degree of consolidation U is given by: 
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Consolidation Theory for Vertical Flow  
(Terzaghi 1-D theory plotted by Craig 2004) 

Time factor Tv is given by 
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Consolidation Theory for Radial Flow 

(Hansbo, 1981) 
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  represents the drain geometry and smear effect 

 

n = de/dw 

s = ds/dw  

de = equivalent diameter of influence for each drain,  

ds = diameter of smear zone (3-4 times the equivalent mandrel diameter) 

dw = equivalent diameter of drain (see later slide) 

kh = average horizontal permeability in the undistrubed zone, 

ks = average horizontal permeability in the smear zone,   



Consolidation curves for Radial Flow (no smear) 
(Hansbo, 1981) 
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Parameter Determination 
Equivalent drain diameter of band shaped vertical drain 
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Smear zone permeability and extent of smear zone 

ds = 3-4 dm (equivalent diameter of mandrel) 

 

Smear zone permeability, ks= (0.33-0.5) kh 
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Assessment of the Extent of Smear Zone  

(Indraratna & Redana, 1998, Sathananthan & Indraratna 2006) 
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Permeability Approach 

Indraratna & Redana, 1998, JGGE, ASCE.  
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Conventional Surcharge vs Vacuum Preloading 
(Chu and Yan, 2005; Mohamed-Elhassan and Shang, 2002) 
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If vacuum pressure is 

modelled as preloading 

surcharge, vertical effective 

stress (hence, settlement) can 

be matched but not the actual 

excess pore water pressure 

Note that VP also propagates 

down the drain length 



Site preparation for Vacuum Consolidation 
(Courtesy from Austress-Menard) 

Drain Installation 

               

Horizontal  drain 
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Site preparation for Vacuum Consolidation 
(Courtesy from Austress-Menard) 

Membrane installation 

Peripheral bentonite 
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Site preparation for Vacuum Consolidation 
(Courtesy from Austress-Menard) 
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Vacuum Preloading  

 Inward Lateral Movement (possible tension zones on 

adjacent utilities) Wang and Law, pp. 105-115, 4th ICSSE, 2006. 

 Air leaks (time-dependent suction)- Bergado et al., 2005 

Factors affecting Performance 

Advantages 

• Lateral movement is less. The risk of shear failure can be 

minimized at a higher rate of embankment construction.  

• The extent of surcharge fill can be decreased to achieve the 

same amount of consolidation settlement (Chu et al, 2000).  

• With vacuum pressure, the unsaturated condition at the soil-

drain interface may be improved, resulting in an increased rate 

of consolidation. 



Multi-drain Analysis and Plane strain 
Conversion  

Field condition: Axisymmetric 

Reduce the 

convergence time 

and require less 

computer memory  

Must give the same 

consolidation response!!  

Maintain geometric 

equivalence 

2D plane strain FEM 



  a) Axisymmetric b) Plane Strain 

Multi-drain Analysis: Conversion of an Axisymmetric Unit 

Cell into Plane Strain  

Hird et al., 1992;   Indraratna et al., 2000 & 2005  
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 Failure of Embankment without PVD 

 Failure of Test 

embankment without 

PVD,  Malaysia 

(Indraratna et al. 1992, 

ASCE)  

 

Inclinometer      
Soft clay     

Crust     

Embankment   

Actual slip 
surface     

Stiff clay     

Instrumentation points

+2.5m   

+0.5m

-5.6m  
CL

Tension Crack

Heavily compacted lateritic fill
Predicted shear band

0

2 m

8.5 m

18.5 m

22.5 m

80 m60 m40 m0 20 m

Weathered crust

Very soft clay

Soft clay

Stiff sandy clay

5.5 m



0

4

8

12

16

20

0.00 0.02 0.04 0.06 0.08 0.10

Normalized Lateral Displacement  

D
e
p

th
 (

m
) 

  

(β1)

Normalized lateral displacement 

Comparison of Normalized Deformations 

 13 days (Failure) 

7 years 13 days 

No Vertical Drains 

With PVD 

Indraratna and Redana (2000), CGJ 



DESIGN EXAMPLE FOR SOFT CLAY IMPROVED BY 
VERTICAL DRAINS – no Vacuum pressure 

9.2m 

450mm diameter Sand drains (dw), 

installed in a square pattern.  

ch = 0.288m2/month  

cv = 0.187m2/month 

Degree of consolidation, U = 90%, 

Time, t = 9 months 

Sand layer 

Bottom of Embankment – drainage blanket 
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Soft Clay layer 

Uv = 0.32  
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n = de/dw 

Ur 
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Given U = 0.90 and Uv = 0.32, Ur = 0.85 

n = de/dw,  

Assuming n1 =5, Th = 0.25 (Fig. 10) 
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nfinal = 6.6, also dw = 0.45m 

Drain spacing, S =2.98/1.13 = 2.63m (square pattern)  

Hence, de=2.98m  

Trial and error, 

now use n3 = 6 



DESIGN APPROACH FOR SOFT CLAY IMPROVED BY 
VERTICAL DRAINS WITH VACUUM PRESSURE 

l =10m 

Impermeable layer 

Sand layer Ut = 90% after t = 1year  dw = 0.06 m  

ch = 2.0 m2/year  cv = 1.0 m2/year  

Smear zone, s = ds/dw = 3;  kh/ks=5 

Vacuum load =40 kPa  
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Solution (Indraratna et al, 2007 method):  
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,2036Making

kh/ks 

         

s 

 4.39 for  

s= ds/dw =3, and 

kh/ks=5  

Indraratna et al., 2007 
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Indraratna et al., 2007 

Determine (,  from  = 4.39  
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18)649.007.2036ln463.0exp()lnexp(  n

Hence, de = 18×0.06 =1.08 m  

Drain spacing, S =de/1.128 for square pattern 

                        S =de/1.05 for triangular pattern 

 

Drain Spacing of about 1m is OK for any pattern 

 

S less than 1m is not practical due to excessive smear 

but, n = de/dw  where dw = 0.06m 



 Test Embankment Stabilized with PVDs – No Vacuum   
(Indraratna and Redana 2000, CGJ)  
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Finite Element Mesh of Embankment for Plane 

Strain Analysis 
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      Surface settlement at embankment centreline 
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FEM Application: Test Embankment Stabilized with PVD and 

Vacuum Preloading in Soft Bangkok Clay, Thailand  
(Indraratna et al 2005, Int. J. of Geomechanics, ASCE,  114-124)  
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Case History: Vacuum Simulation 

Model A: Conventional analysis (i.e., no 

vacuum; only surcharge application) 

 

Model B: Vacuum pressure is adjusted 

according to field measurement and 

reduces linearly to zero at the bottom of 

the drain (k1= 0) 

 

Model C: Perfect seal (i.e. vacuum 

pressure was kept constant at -60kPa 

after 40 days); vacuum pressure varies 

linearly to zero along the drain length 

(k1= 0) 

 

Model D: No vacuum loss along the 

drain length (k1=1) 

0 40 80 120 160
Time (Days)

-80

-60

-40

-20

0

V
a
c
u

u
m

 p
re

s
s
u
re

 (
k
P

a
)

Field measurements 

Model C: Assumed VP 



Case History: Results and Discussion 
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Case History: Results and Discussions 

Lateral Movements at 

Embankment Toe 
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Advantages 

• Embankment height 

reduction from 4.0m to 2.5 m 

• Time reduction from 12 

months to 4 months  

Weathered Crust is less 

stiffer than laboratory based 

properties   
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Installation methods 

Non-displacement Type 

 

Soil is removed from the 

hole (e.g. Sand drains) 

 

Less soil disturbance 

around the drain 

 

Displacement Type 

 

Soil is not removed from 

the hole; pushed aside 

or displaced (e.g. PVDs) 

Significant soil 

disturbance around 

the drain  

Use of steel mandrel  

(popular method)  




