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ABSTRACT: A static loading test provides more than a single-point value, "capacity". The primary use of a loading test is to show the load-

movement response of the pile-and-soil system in order to assist in analysis of the transfer of a supported load to the soil. A pile is composed 

of a series of short lengths (elements) that are affected by shaft shear or toe stress, expressed as a relation of stress (load) versus movement for 

the element. The response of the soil around a pile element is expressed in load-transfer functions. The response of a pile head, that is, the 

actual pile load-movement curve, is the sum of the response of a series of individual pile elements. Fitting the theoretical load-movement 

response to actual test results by trial-and-error applying a series of shaft (t-z) functions and a toe (q-z) function, enables a calibration of a pile 

and site that serves to establish the load-transfer conditions of a piled foundation needed for determining what short and long-term settlement 

the foundation will experience. Thus, a crude "capacity" assessment will not do. Eight functions for modeling strain-hardening and strain-

softening response are presented in the paper and their use in fitting theoretical to actual results is illustrated. 
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1. INTRODUCTION 

The design of a piled foundation involves assessing and optimizing 

three factors: safety, serviceability, and economy Simply basing the 

design on ratio between capacity (or ultimate resistance) and the 

working load is not satisfactory. First, because there is little 

consensus of what constitutes capacity. Indeed, the capacity defined 

according to the method preferred by one engineer can differ by a 

factor of two from that considered by another engineer (Fellenius 

2013a; 2017) and, also, because the assessed capacity is quite 

dependent on how the static loading test was performed. Second, 

because determining a working load by downgrading the assessed 

capacity using some safety factor or resistance factor says little how 

the pile will respond to that working load. Instead, the results of a 

static loading test should be assessed in terms of the pile load-

movement response. The assessment, or back-analysis starts by 

fitting a theoretical simulation of the measured load-movement, the 

results of which allows for assessing how the pile will respond to 

applied load from a structure. 

The fitting makes use of the fact that a pile can be considered to 

be an axial unit composed of a series of short lengths (elements) that 

are affected by shaft shear or toe stress. The simulation then applies 

relations of load or stress versus movement for the elements. The 

load-movement of the pile head combines (integrates) the response 

of the elements and pile shortening (or lengthening for a tension 

case). The pile-element relation is called load-transfer function (also 

called t z/q-z curve), which is a mathematical expression of the load 

and movement relation. All load-transfer functions are curves that 

either rise steeply at first and become less steep as the movement 

increases or reduce after having reached a peak at a certain 

movement. On occasions, a shaft resistance is constant after having 

reached a maximum value, thus, exhibiting a plastic response. 

However, the load movement response for shaft resistance along a 

pile element (after an initial movement) is only rarely plastic, more 

often, it is either strain-hardening or strain-softening, and a pile-toe 

element will always show a strain-hardening response. 

A load-transfer function expresses the load as a function of a 

movement per some non-linear mathematical relation further affected 

by a "function coefficient" that, sometimes with an additional 

parameter, control the shape of the curve. Fitting a load-transfer 

function to an actual test is best carried out by selecting a specific 

load, a "Target Point", on the test curve, a "Target Load" at a "Target 

Movement", as outlined below. 

 

2. MATHEMATICAL RELATIONS 

Several t-z/q-z relations have been proposed to model the load-

movement response of pile element. Eight are presented in this paper 

as showing the load as governed by movement and as correlated to a 

selected Target Load and a Target Movement. The Target can be, but 

is not usually the estimated "capacity" (ultimate resistance) of the 

load-movement response. 

 

2.1 Chin (1970) 

A hyperbolic relation is the most common approximation of a 

stiffening shear-resistance load-movement response (also called 

strain-hardening) of an element. It is most often expressed in the 

"Chin-Kondner" function shown by Eqs. 1a to 1c. Some define the 

load at infinite movement as the ultimate resistance of the element. It 

is approached asymptotically and can be considered akin to a plastic 

response after a large movement. The slope of the straight line of 

Movement/Load (δn/Qn) versus Movement (δn) expresses the 

resistance mobilized at infinite movement. 
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Where Qn = applied load 

  δn = movement paired with Qn 

  C1 = function coefficient (= 1/Qinf), which is also  

    the slope of the straight line in the δ/Q  

    versus movement, δ ,diagram 

  C2 = y-axis intercept of the C1-slope 

  Qinf = load at infinite movement 
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2.2 Decourt (1999; 2008) 

Equations 2a and 2b show a hyperbolic relation similar to that of Chin 

(1970) as proposed by Decourt (1999; 2008). When applied to a back-

calculation of actual test data, it gives essentially the same fit and the 

load at infinite movement is often also considered to be the ultimate 

resistance of the element. That load is also the intersection of the 

straight line of Load/Movement over Movement (Qn/δn) versus Load 

(Qn). 
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Where  Qn = applied load 

  δn = movement paired with Qn 

  C1 = function coefficient. Also the slope of the  

    straight line in the Qn/δn versus  

    movement diagram 

  C2 = y-intercept of the straight line in the 

    Q/δ versus movement diagram 

  Qinf = load at infinite movement 

 

2.3 Gwizdala (1996) 

Equation 3 shows a strain-hardening function proposed Gwizdala 

(1996) that is  particularly useful for modeling a pile toe response. 

The function is also called "Ratio" or "Power" function. The function 

states that the ratio between a load, Qn, to any other load, herein called 

"Target Load", Qtrg, is equal to the ratio of the movements of these 

loads, δn and δtrg raised to an exponent, ϴ, the "function coefficient", 

that can range from zero through unity. Setting the function 

coefficient to unity results in a straight line. In contrast to the 

hyperbolic function, the load at infinite movement of the Gwizdala 

function is infinitely large. 

 

 

 

            (3) 

 

 

 

Where Qn = applied load 

  δn = movement paired with Qn 

  Qtrg = target load or resistance 

  δtrg = target movement (mobilized at Qtrg) 

  ϴ = function coefficient; an exponent; 0 ≤ ϴ ≤ 1 

 

2.4 Van der Veen (1953) 

Equation 4 shows a function proposed by Van der Veen (1953)that 

displays a plastic response after an initial rise to a maximum value, 

the "Target Load", Qtrg. The function coefficient, b, determines the 

movement at the target load. (The van der Veen function is sometimes 

called the "exponential function"; rather a misnomer). 

 

               (4) 

 

 

Where Qn = applied load 

  δn = movement paired with Qn 

  Qtrg = target load or resistance 

  b = function coefficient > 0 

 

2.5 Hansen (1963) 

Equations 5a through 5c are strain-softening functions proposed by 

Hansen (1964). A strain-softening function shows a curve that first 

increases to a maximum or peak value (Qpeak), then, at some 

movement, reduces (softens) with further movement. 

 

 

 

               (5a) 

 

 

               (5b) 

 

δpeak   =     C2/C1            (5c) 

 

Where Qn = applied load 

  δn = movement paired with Qn 

  C1 = function coefficient; also the slope of the  

    straight line of Movement0.5/Load vs.  

    Movement (δ0.5/Qn vs. δn). 

  C2 = y-axis intercept of the C1-slope; must be >0 

  Qpeak = peak load 

  δpeak = movement paired with Qpeak 

 

2.6 Zhang and Zhang (2012) 

Equations 6a through 6c are strain-softening functions proposed by 

Zhang and Zhang (2012). 

 

 

               (6a) 

 

 

Qpeak = 1/(4b-c)           (6b) 

 

 

               (6c) 

 

Where An = applied load 

  an = movement paired with An 

  a = function coefficient 

  b = parameter = (1/2Qpeak- a/δpeak) 

  c = parameter = (1/4Qpeak- a/δpeak)  

  Peak = peak load  

  δpeak = movement paired with Peak 

 

2.7 Vijayvergiya (1977) 

Equation 7 shows a strain-softening function proposed by 

Vijayvergiya (1977). The Vijayvergiya function coefficient, V, 

ranges from unity to about 5. It controls the shape of the curve before 

and after the target movement. For a V-coefficient equal to 2.0, the 

curve reaches a peak at the target movement, which makes it 

convenient to assume that an ultimate resistance has been reached at 

the target point. However, this is only valid if the Target Load is the 

peak value and, thus, the continued response of the test curve is truly 

strain-softening. For V-coefficients larger than 2.0, a Vijayvergiya 

curve shows a peak load that is larger than the Target Load occurring 

at a movement smaller than the Target Movement. For V = 1, the 

function becomes a Gwizdala function with a function coefficient, ϴ, 

of 0.5. At V = 0, Eq. 7 describes a straight line. 

 

 

               (7) 

 

 

n
n trg

trg

Q Q







 
=  



(1 )nb

n trgQ Q e
−

= −

1 2

n

n

n

Q
C C




=

+

1 2

1

2
peakQ

C C
=

2

( )

( )

n n
n

n

a c
Q

a b

 



+
=

+

2
peak

a

b c
 =

−

( ( 1) )n n
n trg

trg trg

Q Q V V
 

 
= − −



Geotechnical Engineering Journal of the SEAGS & AGSSEA Vol. 50 No. 3 September 2019 ISSN 0046-5828 

 

 

13 

 

Where Qn = applied load 

  δn = movement paired with Qn 

  Qtrg = target load or resistance 

  δtrg = target movement (paired with Qtrg) 

  V = function coefficient; > 0 

 

2.8 Rahman  (2018) 

Equation 8 shows a function proposed by the second author. The 

function equation includes two function coefficients, One denoted 

"M" and one denoted "F". Usually, in fitting to an actual load-

movement curve, M and F range from about 1.0 through 3.0 and 1.5 

through 2.0, respectively. 

 

 

 

               (8) 

 

Where Qn = applied load 

  δn = movement paired with Qn 

  Qtrg = target load or resistance 

  δtrg = target movement (paired with Qtrg) 

  V = function coefficient; > 0 

  F = function coefficient; > 1.0 

 

3. FUNCTION CURVES FOR COMMON TARGETS 

When a static loading test is carried out on a instrumented pile, the 

test results include measurements of axial load determined at strain-

gage locations at various depths, each being the records of a pile 

element. When studying the load-movement response as measured 

for an element, it is convenient to normalize the load and movement 

data to percent of a selected target point. The "Target Load" on the 

ordinate and "Target Movement" on the abscissa have then 

coordinates of 100 % and 100%, respectively. 

Figure 1 compares the normalized Chin-Kondner (hyperbolic) 

and Figure 2 the Gwizdala (ratio) function. That is, the two functions 

that represent strain-hardening response. For both, all of the function 

curves go through the respective Target Point. The function 

coefficients (C1 and θ, respectively) control the shape of the 

respective curve before and after the Target Point. The Chin function 

coefficient, C1, ranges from a low of 0.0010 through a high of 0.0095 

and the Gwizdala coefficient, θ, ranges from a low of 0.05 through a 

high of 1.00. The 0.0060 C1-coefficient and the 0.20 θ-coefficient are 

typical for the two functions, respectively, for fitting to an actual shaft 

resistance response, although, the Gwizdala function is rarely suitable 

for modeling of shaft resistance. The Gwizdala function is usually the 

best for fitting a simulation to measured toe resistance. The 

coefficient, θ, is then usually larger than 0.50. The exception is when 

the fit is to measurements of toe response affected by residual force. 

By choosing a function coefficient close to 0.0100, the Chin-

Kondner hyperbolic function can be used to simulate an essentially 

elastic-plastic response, thus, avoiding having to use a two-line curve 

where the change between elastic and plastic response is in the form 

of a kink. 

Figure 3 shows the van der Veen function. For a function 

coefficient, b, equal to 0.10, the Target Load and Target Movement 

are both 100 %. For b smaller than 0.10, reaching the target requires 

movement larger than the 100% Target Movement, while curves with 

I larger than 0.10 reach the Target Load at a movement smaller than 

the 100% Target Movement. Similar to the Chin function, choosing 

a van der Veen function coefficient, I, larger than about 0.2, can be 

used to simulate an essentially elastic-plastic response to an imposed 

load. 

Figure 4 shows the Vijayvergiya strain-softening curves. For 

function coefficients, V, equal to 2.0, the peak load is the Target Load. 

However, for coefficients other than 2.0, the curves always reach a 

peak that is larger than the Target Load and they occur before the 

100-% Target Movement. For function coefficients (V) smaller than 

2.0, it would seem that the function ceases to be strain-softening. This 

is only apparent, they just reach the peak at a movement larger than 

the maximum of the abscissa scale. The Vijayvergiya function is 

usually used with the function coefficient, V, of 2.0. It is only rarely 

applied with a V-range outside 1.75 through 2.25. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1  Load-transfer curves per the Chin-Kondner (1970) 

 

 
 

Figure 2  Load-transfer curves per the Gwizdala (1996) 

 

 
 

Figure 3  Load-transfer curves per the  van der Veen (1953) 

 

Figure 5 shows the Hansen strain-softening functions. Unlike the 

Vijayvergiya function, the maximum load will always be the 100 % 

value. The function coefficient, C1, controls the shape of the curve 

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

L
O

A
D

  (
%

)

MOVEMENT  (%)

Target point

θ = 1.00

θ = 0.05

Gwizdala

0

25

50

75

100

125

150

0 50 100 150 200 250 300 350 400

L
O

A
D

  
(%

)

MOVEMENT  (%)

Target point; b = 0.10

b = 0.01

b = 0.25

van der Veen

1
1 1F F M

trg trg n

n trg F F

trg n

Q Q
   

 

− − +
=   + 

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

L
O

A
D

  (
%

)

MOVEMENT  (%)

Target point

C1 = 0.0010

C1 = 0.0095

Chin-Kondner

C1 = 0.0060



Geotechnical Engineering Journal of the SEAGS & AGSSEA Vol. 50 No. 3 September 2019 ISSN 0046-5828 

 

 

14 

 

and the magnitude of the movement at the target load. At C1 = 0.0005, 

the movement is equal to the 100-% target movement.  

Choosing a coefficient smaller than 0.0005 will represent a t-z 

curve for which the target load is mobilized at a movement smaller 

than that at the 100-% Target Movement, while choosing C1 larger 

than 0.00050, the Target Load is mobilized at a movement larger 

Target Movement. For both options of a coefficient not being 0.0005, 

the load calculated at 100-% movement will be smaller than the target 

load. 

 

 
 

Figure 4  Load-transfer curves per the Vijayvergiya (1977) 

 

 

 
Figure 5  Load-transfer curves per the Hansen (1977) 

 

Figure 6 shows the Zhang strain-softening functions. In contrast 

to the Hansen function, all curves go through the target point (100% 

load and 100% movement) and the function coefficient, a, just 

controls the shape of the curves. Thus, the Zhang function is often 

easier to use than the Hansen function, when fitting results to a known 

target point where the issue is the shape of the t-z curve before and 

after the target point. 

Rahman strain-softening function is governed by two coefficients, 

M, and F. In fitting to an actual case, the trial-and-error procedure is 

to keep one of the two constant, while adjusting the other. Figure 7a 

shows the Rahman curves for a fixed function coefficient, M = 1.00, 

and a range of function coefficients, F, and Figure 7b shows a fixed 

function coefficient, F = 2.00, and a range of function coefficients, M. 

In fitting to actual test records, it is most practical to start with F = 2 

and, then, when having obtained a reasonably good fit by varying "M", 

fine-tune the fit by means of varying F, while keeping M unchanged. 

 
 

Figure 6  Load-transfer curves per the Zhang and Zhang (1977) 
 

 
 

Figure 7a  Load-transfer curves per Rahman (2018) 
 

 
 

Figure 7b  Load-transfer curves per Rahman (2018) 

 

4. CASE HISTORY APPLICATION 

In simulation of load-movement response measured in actual full-

scale tests, usually one of the cited functions will produce a better fit 

than another. In the following, the functions are applied to actual test 

results on an 800 mm diameter bored pile in a fine-grained soil 

published by Bohn et al. (2017) 
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Figures 8 and 9 show shaft-resistance movement curves from 

static loading test measured at two separate pile elements in the test 

pile. Both examples indicate strain-softening shaft resistance 

response. Figure 8 shows a peak resistance at a movement of no more 

than 5 mm, while for the test plotted in Figure 9 shows no peak before 

the movement relative the pile and the soil was 20 mm. Back-

calculations attempting to obtain a best-fit for each of the eight t-z 

functions to the measured curves show a reasonable to excellent fit 

for the curve portion before the peak resistance for all but the Hansen 

and Vijayvergiya functions. Of course, the three strain-hardening 

functions, Chin-Kondner, Decourt, and Gwizdala, cannot show any 

agreement to the post-measured peak resistance, which is the obvious 

case also for the van der Veen function with its plastic post-peak 

response. Neither was it possible to obtain a good post-peak fit of the 

Hansen and Vijayvergiya strain-softening functions. However, for 

both examples, the Zhang and Rahman functions gave a good fit to 

the measured load-movement throughout. Indeed, the Rahman fit is 

excellent. 

 

 
 

Figure 8  Best-fit functions actual records of unit shaft resistance 

along a Pile Element 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9  Best-fit functions actual records of unit shaft resistance 

along a Pile Element 2 

 

The curves shown in Figures 8 and 9 make it clear that for any 

meaningful conclusion to be drawn from a fit between a function 

curve and an actual test curve requires that the data and the closeness 

of the fit between calculated to measured must go well past a peak 

value. 

 

Figures 10 and 11 show results from the pile-head load-

movement measured in a bidirectional test (O-cell test; Osterberg 

1989) on an 1,800-mm diameter, 50 m deep bored pile (Loadtest 2015) 

in Sioux City, Idaho. 

For the downward load-movement of the lower length of the test 

pile (Figure 8), it was not possible to fit a single t-z function to the 

full length of the lower portion of the test pile. A function that fitted 

a first portion did not fit the second. To obtain the best fit of the 

Gwizdala and Chin-Kondner strain-hardening curves, required 

considering two portions of the curve, a first portion and a second, 

each with its own target point. The reason was that the downward 

load-movement response was the effect of both shaft and toe 

resistance. The trial-and-error fits included adjusting the soil strength 

parameters (beta-coefficients) for the individual soil layers, still 

ensuring that the target load, which is a sum of all element loads, 

stayed the one selected. 

For the upward portion (Figure 9), the response was from shaft 

resistance only and, because the shaft resistance was fairly similar 

soil (sand and silt) along the upper length of the pile, both the 

Gwizdala and Chin-Kondner strain-hardening functions gave good 

fits. The figure also shows the fits of the van der Veen and the 

Vijayvergiya and Rahman strain-softening functions, which could 

only be made to fit an initial portion of the upward load-movement 

curve (all three had the same Target Load). The Vijayvergiya 

function could be made to fit the entire record, but, as the Target Load 

then had to be input as larger than the maximum test load and the 

function coefficient be reduced to a value of 1.0, the fit has little 

meaning. 

 

 
 

Figure 10  Measured and simulated strain-hardening downward 

curve, load-movements (Data from Loadtest 2015) 

 

 
 

Figure 11  Measured and simulated strain-hardening upward curve, 

load-movements, Sioux City, IH. (Data from Loadtest 2015) 
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Obviously, fitting to the load-movement of a pile, as opposed to 

a pile element, omits influence of pile shortening (pile compression) 

and the fact that shaft resistance response for shaft elements and the 

pile toe are quite different. 

Figure 12 show the results of applying a t-z analysis to the pile 

shaft elements and the pile-toe element and fitting the load-movement 

of the individual element together with the pile shortening to obtain 

the load-movement measured at the bidirectional cell level. The shaft 

resistance was modeled using a Chin-Kondner hyperbolic function 

and the toe resistance was modelled using a Gwizdala function. The 

simulation was made using the UniPile5 software (Goudreault and 

Fellenius 2014). 

 

 
 

Figure 12  Upward and downward measured and fitted bidirectional 

(O-cell) curves. Test in Sioux City, IH. (Data from Loadtest 2015) 

 

The downward and upward load-movement curves of the 

bidirectional test are often combined to provide an equivalent head-

down test. Most often, the equivalent test curve is constructed 

mechanically and directly from the test records with adjustment to the 

fact that the load affecting the pile below the depth of the bidirectional 

cell, BD, will have caused an axial pile shortening between the pile 

head and the BD depth. However, this approach neglects the fact that 

the upward portion of the bidirectional test will first engage the soil 

nearest the BD level and the soil nearest the pile will be engaged last. 

In the head-down test, the opposite occurs. Moreover, the upward 

curves—both measured and fitted—include the pile weight, whereas 

for the head-down load-movement (and the bidirectional downward 

curve), the influence of the pile weight is not included. Thus, the 

mechanical and direct method will result in an equivalent pile-head 

load-movement curve that is stiffer than the true head-down load-

movement curve, which can easily lead to an overestimation of the 

test results. 

Figure 13 shows the equivalent head-down load-movement 

curves determined by applying the same t-z element functions in 

simulating the head-down static loading test of the Sioux City test. 

The diagram illustrates results of different ways to extrapolate the test 

data from a known load-movement point. The point usually of 

primary interest is the point on the pile head load-movement curve 

that represents the value of the sum of the downward and upward 

loads (with due adjustment of the pile weight for the latter) marked 

"Head at twice the max. test load". Pile head load-movement beyond 

this point is an extrapolation of the test data. 

However, the advantage of the bidirectional test over a head-

down test is that the mobilization of the pile toe is to a much larger 

load and movement than in the equivalent head-down test to a load 

equal to twice the cell load. The point "Head at maximum toe 

movement" indicates the pile head load that would be required to 

mobilize the pile toe to a load-movement equal to that in the test. 

The profession has different opinions about what pile-head load 

of the equivalent pile-head load-movement curve that represents the 

pile "capacity" of the test. However, this difference of opinions is 

rather irrelevant for structures supported on the test pile and, therefore, 

also to the design of the piled foundation. What matters is the 

settlement of the foundation supporting under the working load. 

 
Figure 13  Equivalent head-down load-movement curves 

 

Figure 14 shows the load distribution for the target load of the 

analysis determined directly from the fitting process. Additional 

distributions for a larger or smaller load applied to the pile head can 

easily be produced. The figure represents the simulation of the shaft 

resistance after adjustment for pile weight. It is simple to consider the 

effect of placing a working load at the pile head and to simulate the 

subsequent load distribution for the short- and long-term conditions 

to arrive at a decision as to accept or not the working load for the pile 

from the aspect of settlement. It is beyond the scope of this paper to 

indicate the process. Such details have been presented by Fellenius 

(2016a). The primary conclusion is that applying the t-z functions to 

analyse the results of the static loading test enables determining the 

settlement of the foundation supported on the pile and removes the 

need for involving an irrelevant assessment of "capacity" and 

applying some "factor of safety" or "resistance factor" to arrive at a 

presumed "safe" working load that may or may not introduce an 

acceptable level of settlement. 

 
Figure 14  Load-distributions for the Target Load 

(Test in Sioux City, Idaho) 
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Figure 15 shows results of a bidirectional test in silty sand carried 

out in Brazil (Elisio 1983), which involves measuring the upward 

movement of the pile head and the downward movement of the cell 

level. The pile was a 700-mm diameter, 11.5 m long, full-

displacement pile. For the piles shorter than about 15 m, adding 

instrumentation for measuring pile shortening (additional telltales) 

and load distribution (strain-gage instrumentation) is usually 

superfluous. In contrast, had the test been a head-down test, 

instrumentation would have been necessary in order to determine the 

load distribution and, in particular, the pile toe response. The same 

process was applied of selecting target point on the curve and fitting 

simulated upward and downward load-movement curves using t-z 

functions for shaft element and the pile toe by means of a trial-and-

error using the UniPile5 software. (N.B., the upward and downward 

target loads for the upward and downward curves are equal, but the 

target movements differ). 

 

 
 

Figure 15  Results of a bidirectional test at tower and shopping 

center, Sao Paulo, Brazil (Fellenius 2014; data courtesy of Arcos 

Egenharia de Solos, Brazil) 

 

Figure 16, presents the equivalent head-down load-movement 

curves, as determined by the UniPile5 software applying the same t-z 

functions as used for the fitting to the bidirectional test. Again, the 

specific points of interest are marked out in the diagram. 

 

 
 

Figure 16  Equivalent head-down load-movement for tower and 

shopping center, Sao Paulo, Brazil (Fellenius 2014) 

 

Figure 17 shows the equivalent head-down load-distribution, as 

determined by the UniPile5 software applying the same t-z functions 

as used for the fitting to the bidirectional test determined applying the 

same soil parameters and t-z functions as used for the fitting to the 

bidirectional test). 

Figure 18 shows results of another bidirectional test carried out in 

Brazil. The pile was a 400-mm diameter, 16.0 m long, full-

displacement pile, and the soil profile consisted of sandy clay turning 

to sandy silt. The figure includes the results of applying a t-z analysis 

to the pile shaft elements and the pile-toe element and fitting the load-

movement of the individual element together with the pile shortening 

to obtain the load-movement measured at the bidirectional cell level. 

The shaft resistance was modelled using a van der Veen function 

along the length above the BD and a Chin-Kondner function along 

the length below. The toe resistance was modelled using a Gwizdala 

function. The simulation fit was made using the UniPile5 software 

(Goudreault and Fellenius 2014). 

 

 
 

Figure 17  Equivalent head-down load-movement for tower and 

shopping center, Sao Paulo, Brazil (Fellenius 2014) 

 

 
Figure 18  Results of a bidirectional test at tower and shopping 

center, Belo Horizonte, Brazil. (Fellenius 2014; data courtesy of 

Arcos Egenharia de Solos, Brazil) 
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Figure 19 shows the equivalent head-down load-movement 

curves, as determined applying the same t-z functions as used for the 

fitting to the bidirectional test.  

 

 
 

Figure 19  Equivalent head-down load-movement at tower and 

shopping center, Belo Horizonte, Brazil (Fellenius 2014) 

 

Figure 20 shows the equivalent head-down load distribution for 

the Target Point analysis. It is obvious that the pile toe resistance is 

very small. The load-distribution analysis will enable an estimate to 

be made of the long-term settlement of a pile foundation supported 

on similar pile for which the analysis of the pile response would have 

to include the effect of adjacent foundation and other influencing 

factors (Fellenius 2016a). 

 

 
 

Figure 20  Equivalent head-down load distribution at tower and 

shopping center, Belo Horizonte, Brazil (Fellenius 2014) 

 

5. CONCLUSIONS  

In fitting a calculated (simulated) t-z curve to a measured response of 

a pile element, e.g., strain-gage records from an instrumented pile, it 

is important that the set of records covers the full mobilization of the 

gage level as demonstrated in Figure 7. A back-calculation only 

addressing an initial portion of the records can achieve an "excellent 

agreement" using any functions, but has then limited value. 

Nothing is gained or learnt by fitting a load-transfer function to a 

pile-head load-movement response. This is because the response is a 

summary  of  the  responses  of  the  series  of  individual pile elements  

along the shaft and the toe element plus the 'elastic' shortening of the 

pile shaft. A characteristic point on the pile head load-movement 

curve, such as peak load, does not occur at the same time as similar 

characteristic points occur at the series of pile elements representing 

the pile. 

A load-transfer back-calculation does not require imposing an 

assumed ultimate resistance. Such items or issues are unrelated to the 

load-transfer functions. This notwithstanding that a couple of the 

load-transfer functions can be used as reference to ultimate resistance. 

It is a futile effort to define a pile capacity as a sum of ultimate shear 

along pile elements, defined one way or another, and combined with 

a perceived ultimate toe resistance. Those values will not develop 

simultaneously or occur for the same load applied by the pile head 

jack (or bidirectional cell). (Besides, the capacity value obtained from 

accumulating element responses will not be the same as a capacity 

determined from the pile-head load-movement curve). The useful 

approach is to base the analysis on load-transfer functions acting at a 

series of pile elements. It enables a design to be carried out that 

addresses settlement of the single pile and pile group, the more 

realistic issue in piled foundation design. 

Not only will the end results enable a settlement analysis of the 

pile represented by the test pile, when the t-z function(s) that fit the 

conditions for the pile and the soil have been established, the effect 

of shortening or lengthening a pile, of using a pile with a larger or 

smaller diameter, of excavating around the piles or adding fill to the 

site, etc. can be determined. 

The trial-and-error fitting process can be speeded up by using the 

Excel spreadsheet template published by the first author (Fellenius 

2016b).  

On establishing in a back-calculation fit to measured pile element 

responses (i.e., records from the gage locations), then, a suitable 

computer program needs to be engaged to combine the response of 

all the elements making up the pile, for example, the UniPile5 

software (Goudreault and Fellenius 2014), and to calculate the 

resulting pile head (and pile toe movement) for use, say, in settlement 

analysis of a foundation supported on the piles, as recommended by 

Fellenius (2016a). 
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