Dr Stephen Buttling

Resident Project Manager

Underground Train Station

Suvarnabhumi Airport, Bangkok, Thailand

Mirny diamond mine East Siberia

1200 m diameter 550 m deep

- Some thoughts on soil investigation
 - Where did the soil come from?
 - Where did the rocks come from?
 - Where did the earth come from?

- Earth born about 4.5 billion years ago
- Solidified cloud of dust and gases left over from creation of the Sun
- For about 500 million years cooled down and core became about 2,000°C
- Oldest rocks on earth's surface about 4.4 billion years old – about 2.5 billion in North Australia
- Radioactive decay caused heating/melting.
 Iron moved to centre, forced silicates upwards

- There would have been volcanoes and lava flows, but a thin fairly stable crust formed
- Depressions filled with water rising from within
- Water cycle started
- Weathering of the igneous and volcanic rocks followed
- Erosion through streams and rivers led to deposition as sediments

- Oldest rocks around Brisbane about 390 million years
- All soil sediments deposited in Pleistocene (last 2 million years)
- Current deposition is Holocene, about the same as man, last 10,000 years
- Deposition starts as boulders at stream heads, through gravels and sands within river to silts at estuary/delta and marine deposits beneath sea
- Subsequent layers lead to high vertical stresses and consolidation

- Soil behaviour defined by stress history
- Loose sediments become denser/stiffer through consolidation
- Overconsolidation caused by glaciation, erosion
- Lateral stresses of stiffened soils tectonic action, folding, faulting

Looking first at a tank full of water

Now considering soil, vertical stress is

$$\sigma_{v} = \sum_{i=1}^{n} z_{i} \gamma_{i}$$

- Assume $\sigma_h = K\sigma_v$
- K = coefficient of lateral earth pressure
- Not a constant function of:
 - Soil properties particle size and shape
 - Position varies within a layer
 - Time effects of excavation, loading etc
 - Therefore of stress history effects of eg glaciation (London Clay)

Overconsolidation ratios of up to about 100 have been measured

A BETTER TOMORROW made possible

- Define coefficient of lateral earth pressure at rest K_0
 - Normally consolidated soils < 1, maybe 0.4 to 0.5
 - Overconsolidated soils and decomposed rocks, maybe 3

EarthTech

A tyco International Ltd. Company

A BETTER TOMORROW made possible

- Rankine states
 - Active pressure limit K_a as soil is stretched, e.g. upper part of wall moving towards excavation
 - Passive pressure limit K_p as soil is compressed horizontally, e.g. toe of wall moving towards excavation

Compression Unloading test and Extension Loading test on dense sand. Note:

- •Strain to active state $\sim 0.5\%$
- •Strain to half passive state $\sim 0.5\%$
- •Strain to full passive state $\sim 3\%$

For loose sand strain to full passive state $\sim 15\%$

Gravity wall – large strains

Sheet pile walls

- Mana and Clough (1981) suggest 0.2 to 2%
- Baggett and Buttling (1977) ~ 1.4%

Diaphragm walls

Small strains; $\sim 0.1\%$ for top down and 0.2% for strutted excavations

values are about 0.1% of excavation depth for good workmanship in reasonable soil

- Diaphragm walls "Concurrent tunnelling and station excavation at Bangkok MRTA North" – Yeow, Gaba & Pillai – 15th SEAGC
 - Use of BRICK model and CamClay very small strains = high stiffness = low soil pressure = low bending moment = low reinforcement requirement = cost saving.
 - After construction, wall stiffness is low, so IF error occurs, higher pressure = higher bending moment = greater deflection = lower stiffness = higher pressure = higher bending moment = greater deflection = lower stiffness = higher pressure = higher bending moment

FIGURE 10-15
Example of Analysis of Anchored Bulkhead