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Morning  

 

08:00h Registration 
 

08:30h The Static Loading Test  

 and Other Testing Methods 

 

09:40h Break 
 
10.00h The Bi-directional Test — the O-cell 

 

11:00h Brief Background to Basic Principles 

 Applicable to Piled Foundations 

 

12.00h LUNCH 
 

SCHEDULE 

Afternoon 

 

13:00h Piles and Pile Groups—Long-term Behavior 

 and How We Know What We Know 

 

14:10h Break 
 

14:30h Analysis of Load Transfer  

 and Capacity of Piles 

 

15:40h Unified Design of Piles and Pile Groups 

 

16.45h Questions and Discussions 

 

17:30h End of Day 
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www.Fellenius.net 
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Brisbane 

Power Point Slides  

 1-Static_Test.pdf  

 2-Background.pdf  

 3-Case_Histories.pdf  

 5-Analysis.pdf  

 6-Unified_Method.pdf  

  

UniSoft Programs 

Information and Order Form  

UniBear.zip  

UniCone.zip  

UniPhase.zip  

UniPile.zip  

UniSettle.zip 
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FOUNDATIONS 

 

Bengt H. Fellenius 

The Static Loading Test                                                                

Performance, Instrumentation, Interpretation 

Brisbane November 28,  
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Candidates  for  Darwin  Award,  First Class 
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! ! ! 

Testing piles is a 
risky business.   
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4. JACK 

3. LOAD CELL 

2. SPACER 

1. SWIVEL 

PLATE 

What do you 

think could 

happen to the 

stack of four 

pieces on the 

pile head when 

the load is 

applied?  And, 

therefore, to the 

three oblivious 

persons next to 

the pile? 



12 12 This is how experience taught the three, and others, to arrange the units on the pile head 
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Better safe than sorry! 
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Fellenius 1984 
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The error can be small or it can be large.  Here are results 
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A routine static loading test provides 

the load-movement of the pile head... 

and the pile capacity? 
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The Offset Limit Method 
Davisson (1972) 

OFFSET (inches)                 =     0.15 + b/120 

OFFSET (SI-units—mm)      =    4  +  b/120 

                                     b      =     pile diameter (inch or mm) 

L
L

EA
Q 

Q

L
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The Decourt Extrapolation 

 Decourt (1999) 
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Other methods are: 

 

   The Load at Maximum Curvature 

   Mazurkiewicz Extrapolation 

   Chin-Kondner Extrapolation 

   DeBeer double-log intersection 

   Fuller-Hoy Curve Slope 

   The Creep Method 

   Yield limit in a cyclic test 

 

For details, see Fellenius (1975, 1980) 
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DECOURT 235 
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Pile E2

9.5-inch closed-

toe pipe

Some results from Jones Island, Milwaukee 

 on 30 m to 50 m long driven piles (Fellenius et al., 1983) 
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Pile B2

12HP63
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Pile Toe Movement 
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toe arranged to 
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Analysis of toe resistance 

An adjacent pull test on 

a similar instrumented 

pile established that the 

pile shaft resistance  is 

about 2,000 KN 

approximately fully 

mobilized just short of 

5-mm toe movement.  

The thereafter applied 

load in the push test 

goes to toe resistance, 

only. 
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20 inch square diameter, prestressed concrete pile driven 

to 58 ft embedment, through about 45 ft of soft silt and 

clay,  5 ft of sand, and to bearing 6 ft into hard clay 
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and  

PULL 

To separate 
shaft and toe 
resistances.  
The pile is 

equipped with 
a toe telltale. 

Unloading- 
reloading 
once or a 
couple of 
times “on 
the way up” 
serves no 
purpose and 
may result 
in distorted 
analysis 
results 
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Combining the push and pull test results with the telltale 

measurements to calculate the load-movement for the pile toe 

Data from AATech Scientific Inc. 
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It is not possible to interpret more than very approximately from the load-

movement curve how much of the pile capacity that is toe resistance and 

how much is shaft resistance. 

Suggestions for Routine Testing 

Adding occasional unloading and re-loading “cycles” only distorts the 

figure.  Cyclic loading requires a multitude of identical cycles — maybe 

cycle 100 times at each load and unload magnitude, and cycle at several 

load levels.  This is not practical for routine tests, but anything less is 

waste of effort. 

The “standard” method of eight increments up to a maximum load is 

probably the worst method of the lot.  Instead of applying one increment 

each hour (as a shock to the pile), use one a quarter of the increment size 

and apply one every 15 minutes — a much more gentle approach.  Or, 

one small increment every 10 minutes — aim for a total of about 30 

increments; a five-hour test duration. 

On reaching the maximum load and holding it (say, for 10 minutes), 

unload in, say five or six decrements. 
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The routine static loading test with load applied to 

the pile head and movement measured only at the 

pile head provides very limited information  —  

Good enough for proof testing.  However, if more 

information is desired, instrument the test pile, or  

run an O-cell test. 

 



37 

 

Instrumentation 
 

and 
 

 Interpretation 
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T e l l t a l e s 
• A telltale measures shortening of a pile and must never be arranged 

to measure movement. 

• Let toe movement be the pile head movement minus the pile 

shortening. 

• For  a single telltale, the shortening divided by the distance between 

the pile head and the telltale toe is the average strain over that 

length. 

• For two telltales, the distance to use is that between the telltale tips. 

• The strain times the cross section area of the pile times the pile 

material  E-modulus is the average load in the pile. 

 

• To plot a load distribution, where should the load value be 

plotted?  Midway of the length or above or below? 
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Load distribution for constant unit shaft resistance  
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Linearly increasing unit shaft resistance 

and its load distribution   
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• Today, telltales are not used for determining strain (load) in a pile 

because using strain gages is a more assured, more accurate, and 

cheaper means of instrumentation. 

• However, it is good policy to include a toe-telltale to measure toe 
movement.  If arranged to measure shortening of the pile, it can also 
be used as an approximate  back-up for the average load in the pile. 

 
• The use of vibratory strain gages (sometimes, electrical resistance 

gages) is a well-established, accurate, and reliable means for 

determining loads imposed in the test pile. 

• It is very unwise to cut corners by field-attaching single strain 

gages to the re-bar cage.  Always install factory assembled “sister 

bar” gages. 
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Rebar Strain Meter — “Sister Bar” 

Reinforcing Rebar

Rebar Strain Meter

Wire Tie

Instrument Cable

or Strand

Wire Tie

Tied to Reinforcing Rebar Tied to Reinforcing Rings

Reinforcing Rebar
or Strand

(2 places)

Rebar Strain Meter

Instrument Cables

(3 places, 120° apart)

Hayes 2002 

Three 

bars?! 

Reinforcing Rebar

Rebar Strain Meter

Wire Tie

Instrument Cable

or Strand

Wire Tie

Tied to Reinforcing Rebar Tied to Reinforcing Rings

Reinforcing Rebar
or Strand

(2 places)

Rebar Strain Meter

Instrument Cables

(3 places, 120° apart)
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We have got the strain. 

How to we get the load? 

 

• Load is stress times area 

 

• Stress is Modulus (E) times strain 

 

 

• The modulus is the key 

 

 E
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For a concrete pile or a concrete-filled bored pile, the 

modulus to use is the combined modulus of concrete, 

reinforcement , and steel casing 

cs

ccss

comb
AA

AEAE
E






   Ecomb = combined modulus  

   Es = modulus for steel 

   As = area of steel 

   Ec = modulus for concrete 

   Ac = area of concrete 
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• The modulus of steel is 200 GPa (207 GPa for those weak at heart) 

 

• The modulus of concrete is. . . . ? 

Hard to answer.  There is a sort of relation to the cylinder strength and the 

modulus usually appears as a value around 30 GPa,  or perhaps 20 GPa 

or so, perhaps more.  

This is not good enough answer but being vague is not necessary. 

The modulus can be determined from the strain measurements. 

 

Calculate first the change of strain for a change of load and plot the 

values against the strain. 

 

Values are known 








tE
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Which can be integrated to: 

But stress is also a function of 

secant modulus and strain: 

Combined, we get a useful relation: 

baEs  5.0

In the stress range of the static loading test, modulus of concrete 

is not constant, but a more or less linear relation to the strain 

and Q = A Es ε 
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Note, just because a strain-gage has registered some strain 

values during a test does not guarantee that the data are 

useful.  Unavoidable errors and natural variations amount to 

about  50 microstrain to 100 microstrain.  Therefore, the test 

must be designed to achieve strain values at least of about 500 

microstrain and beyond.  If the imposed strain are smaller, the 

relative errors and imprecision will be large, and interpretation 

of the test data becomes uncertain, causing the investment in 

instrumentation to be less than meaningful.  The test should 

engage the pile material up to at least half the strength.  

Preferably, aim for reaching close to the strength. 
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Example of evaluation and assessment of strain-gage values 

Bored Pile, Singapore, 2007
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UTP-3 Load-Movement
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STAGE  II, Tangent Modulus
Pile diameters are all equal to nominal value (1.00 m)
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UTP-3  Load-Strain for adjusted areas
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In a trial-and-error approach, the piles diameters (pile areas) were 
adjusted, and the strains were proportioned to the adjusted pile areas to 
ensure parallel slope of load-strain curves and equal tangent modulus lines. 

Adjustments ranged from increasing the diameter by 110 mm (#6) through 280 mm (#7) 
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STAGE  II, Tangent Modulus
Pile diameters are adjusted
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Note, you can also plot the tangent-modulus lines as tangent-stiffness (AE) 

lines, i.e., plot change of load over change of strain as opposed to change 

of stress over change of strain.  Then, use the AE-values directly in the 

load calculation.  However, this does give you less reference to what the 

actual differences are along the pile. 
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  What we measure is the increase of 

load in the pile due to the load applied 

to the pile head.  What about the 

external-origin load in the pile that 

was there before we started the test? 

  That is, the Residual load. 
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B. Load and resistance in DA 

     for the ultimate load applied 

Sand 

Example from Gregersen et al., 1973 
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Distribution of Measured Loads (“False Resistance”) 

and “True Resistance 
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FHWA tests on 0.9 m diameter bored piles 

One in sand and one in clay 
(Baker et al., 1990 and Briaud et al., 2000) 
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RESULTS: Load-transfer curves 
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Results of analysis of a Monotube pile in sand 
(Fellenius et al., 2000) 
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Method for evaluating  

the residual load distribution 
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Analysis Procedure 
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Results 
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• “Residual Load” is the same as “Drag Load”.  The 

distinction made is that by residual load we mean the 

locked-in load present in the pile immediately before we 

start a static loading test.  By drag load we mean the load 

present in the pile in the long-term 

Residual load 

• Residual load as well as drag load can develop in 

coarse-grained soil just as it does in clay soil 

• Both residual load and dragload develop at very small 

movements between the pile and the soil 
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But,  is the “no-load” situation really the 

reading taken at the beginning of the test?  

What is the true “zero-reading” to use? 

The strain-gage measurement is 

supposed to be the change of strain 

relative the “no-load”  situation (i.e., 

when no external load acts at the gage 

location). 
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• We often assume – somewhat optimistically or naively –

 that the reading before the start of the test represents 

the “no-load” condition. 

• However, at the time of the start of the loading test, loads 

do exist in the pile and they are often large. 

• For a grouted pipe pile or a concrete cylinder pile, these 

loads are to a part the effect of the temperature 

generated during the curing of the grout. 

• Then, the re-consolidation (set-up) of the soil after the 

driving or construction of hte pile will impose loads on the 

pile. 
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Concrete curing temperature measured in a grouted 

concrete cylinder pile  
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The strain gages are not temperature sensitive, 

but the strain measurements may be! 

 

The vibrating wire and the rebar have almost the same temperature 

coefficient.  However, the coefficients of steel and concrete are slightly 

different.  This will influence the strains during the cooling of the grout.  

More important, for lower quality vibrating wire gages, the rise of 

temperature in the grout could affect the zero reading of the wire and its 

strain calibration.  It is necessary to “heat-cycle” (anneal) the gage 

before calibration.  (A routine measure of Geokon, US manufacturer of 

vibrating wire gages). 

 

 



80 80 

• Readings should be taken immediately before 
(and after) every event of the piling work and 
not just during the actual loading test 

• A series of No-Load Readings will tell what 
happened to the gage before the start of the 
test and will be helpful in assessing the 
possibility of a shift in the reading value 
representing the no-load condition  

• If the importance of the No-Load Readings is 
recognized,  and if those readings are reviewed 
and evaluated, then, we are ready to consider 
the actual readings during the test 
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  Of course,  

we must consider also other aspects: 
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Interpretation of a series of tests 

 performed at different times 
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Also the best field work can get messed up if the analysis and 

conclusion effort loses sight of the history of the data 

The dynamic test (CAPWAP) was performed after the static test. 

The redriving (ten blows) forced the pile down additionally about 45 mm. 
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Result on a test on a 2.5 m diameter, 85 m long bored pile 
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Does unloading/reloading add anything of value to a test? 
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The above series of unloading/reloading has 

added nothing but cost the client a lot of money. 
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Good measurements do not guarantee good conclusions! 

A good deal of good thinking is necessary, too 
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Results of loading tests on 40 m long,  

instrumented steel piles in a saprolite soil 
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And a second pile: 
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Jorj Osterberg 2001 

The Bi-Directional 

 Static Loading Test 

The “O-cell Test” 
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Schematics of the Osterberg O-Cell Test 
(Meyer and Schade 1995) 

Upward Load 

Downward Load 

 

 

THE O-CELL 

 

Telltales 

and 

Grout Pipe 

 

Pile Head 
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Three O-Cells inside the reinforcing cage 
(My Thuan Bridge, Vietnam) 
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The O-cell can also be installed in a driven pile (after the driving).  

Here in a 600 mm cylinder pile with a 400 mm central void. 



95 O-cell in a pipe pile inserted in a augercast pile after grouting. 



96 96 Inchon, Korea 
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O-Cell test on a 

1,250 mm 

diameter, 40 m 

long, bored pile 

at US82 Bridge 

in Washington, 

Mississippi 

installed into 

dense sand 
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Resistance Distribution 
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Load-Movement Curves 
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Searching for the Residual Load 
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From the O-Cell results, one can produce the load-movement curve 

that one would have obtained in  a routine “Head-Down Test” 

“Head –down” 
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O-Cell Results Shown Two Ways 
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O-Cell test on 

a 43 ft long pile 

socketed into 

chalk bedrock 

at US82, 

Bridge at 

Oktebbeha, 

MS 
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Measured Resistance Distribution 
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Shaft Shear Distribution 
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Kahuku Bridge across  

Kamehameha Highway, Hawaii 

Test on 600 mm, 17 m long, bored pile 

in hard clay and weathered rock 

EXAMPLE 5 
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EXAMPLE 6 

Test  at  Bangkok  Airport 
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Stage 1 

Lower Cell activated 

Upper cell closed 

 

Stage 2 

Lower Cell open 

Upper Cell activated 

 

Stage 2 

Lower Cell closed 

Upper Cell activated 

 

Data from 
Fox, I., Du, M. and Buttling,S. (2004) 

Buttling, S. (2006) 
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Downward load-movements during test phases 1, 2, and 3.   

Concern was expressed (Buttling 2006) that the toe resistance (Phase 1) was ≈3,000 KN and 

the shaft resistance for the lower segment was ≈5,000 KN (Phase 2), while in Phase 3 the 

combined shaft and toe resistances were only ≈6,000 KN.  Should not the Phase 3 resistance 

be ≈8,000 KN rather than ≈6,000 KN (i.e., the sum of the values ≈5,000 KN and ≈3,000)? 
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Downward toe movements 
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are best plotted per sequence of testing.  Particularly when considering the 

example toe resistance, one must evaluate the load-movement response in 
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115 115 

O-Cell tests for Hacienda Elena 

Development, Guaynabo, Puerto Rico 

EXAMPLE 7 
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Measured load-movements can be 

simulated (fitting) to t-z and q-z relations 

  Pile shaft by t-z relation;  Pile toe by q-z relation 
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O-cell Test Results
with UniPile Simulation

0

5,000

10,000

15,000

0 10 20 30 40 50 60 70

MOVEMENT  (mm)

L
O

A
D

  
(K

N
)

Toe

Shaft

Exp.= 0.20

Exp.= 0.55

O-cell Test Results
with UniPile Simulation

0

5,000

10,000

15,000

0 10 20 30 40 50 60 70

MOVEMENT  (mm)

L
O

A
D

  
(K

N
) Head

Toe

Shaft

Extrapolation of 

O-cell data
Exp.= 0.20

Exp.= 0.55

Fitting Results 

O-cell Test Results
with UniPile Simulation

0

5,000

10,000

15,000

0 10 20 30 40 50 60 70

MOVEMENT  (mm)

L
O

A
D

  
(K

N
) Head

Toe

Shaft

Extrapolation of 

O-cell data
Exp.= 0.20

Exp.= 0.55

Combining the 

t-z and q-z 

curves



119 

Pensacola, Florida 

410 mm diameter, 22 m 

long, precast concrete 

pile driven into silty sand 

EXAMPLE  8 
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Pensacola, Florida, USA 
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Bridge over Panama Canal, Paraiso Reach, Republic of Panama  

O-cell test on a 2.0 m (80 inches) diameter, 30 m (100 ft) deep shaft  

drilled into the Pedro Miguel and Cucaracha formations, February 2003. 

EXAMPLE  9 
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Test Results Processed for Design Analysis 
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Torre Chapultepec, Mexico City, Mexico 

 
O-cell Test on a 700 mm diameter 34 m deep bored pile 

0 m - 26 m      desiccated clayey silt 

5 m – 34+ m   dense sand and silt 

EXAMPLE  10 
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Torre Chapultepec, Mexico City, Mexico 
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Torre Chapultepec, Mexico City, Mexico 
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O-cell Tests on an 11 m 

long,  460 mm  square 

precast  concrete  pile 

driven in silica sand in 

North-East Florida 

(Data from Data from Bullock et al. 2005) 

 

A study of Toe and 

Shaft Resistance 

Response to 

Loading 

EXAMPLE  11 
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CPT sounding next to an 11 m long, 460 mm square precast 

concrete pile driven in silica sand in North-East Florida 

Data from Bullock et al. 2005 
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Load-movement curves for the pile toe. 
The two first cycles and beginning of the third cycle 
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Load-movement curves 

 for the pile toe during all four load cycles 
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O-cell Tests on a 

1.4 m diameter 

bored pile in North-

West Calgary 

constructed in silty 

glacial clay till 

A study of Toe and Shaft Resistance 

Response to Loading and correlation to 

CPTU calculation of capacity 

EXAMPLE  12 
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Stress-Strain
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Load Distribution 
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121 m

EXAMPLE  13 

O-cell Tests on a 2.5 m diameter, 121 m deep bored pile for the 

Sutong Bridge Project - Jiangsu Province, China, constructed in 

compact to dense to very dense sand. 

Note, two-level O-cell test 
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TEST 

RESULTS 

Lower O-cell, Stages 1 and 2
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Zambezi River Bridge, 
Caia, Mozambique 

1.5 m diameter 
60 m embedment 

Bored Pile 

EXAMPLE  14 
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y = 0.0228x + 0.4653
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The O-Cell test with a couple of strain 

gages, judiciously placed, will provide: 

 

1. Separate values of shaft and toe resistances 

2. Estimate of residual load 

3. Load-transfer for the pile 

4. Pile-toe load-movement curves (q-z function) 

5. Results that can be extrapolated to other piles 

6. Data necessary for settlement analysis 
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• Not recognizing that test data can be affected by residual load is the 
reason for delusive concepts such as the Critical Depth. 

Closing remarks 

• It is unfortunate that this fact is still not generally recognized.  As 

should be obvious, this means that poorly thought-through results 

keep confusing the practice. 

• The E-modulus is an important factor in the evaluation of the O-cell 

data that must not be left to chance. 

• The analysis is not completed before the test data have been 

processed in an effective stress calculations and the t-z and q-z 

relations have been evaluated. 

• Instrumentation and taking the readings must be planned, executed, 

and evaluated by persons who are experienced in all the various 

phases. 
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The Absolute and Ultimate Bi-direction 
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Vaughani Shores, Vanuatu www.DiveVanuatu.org 


