GEOTECHNICAL ENGINEERING

Journal of the
SOUTHEAST ASIAN GEOTECHNICAL SOCIETY
&
ASSOCIATION OF GEOTECHNICAL SOCIETIES IN SOUTHEAST ASIA

Sponsored by
ASIAN INSTITUTE OF TECHNOLOGY

Guest Editor Prof. Jie Han
GEOTECHNICAL ENGINEERING

March 2011 Issue: Geosynthetics
Edited by Prof. Jie Han

Prof. Jie Han, the Guest Editor is a Professor at Department of Civil, Environmental, and Architectural Engineering at the University of Kansas in the United States. He received his Ph.D. degree in Civil Engineering from the Georgia Institute of Technology in 1997 and has been a professional engineer in Georgia since 1998. Dr. Han was a senior engineer and manager of technology development at Tensar Earth Technologies, Inc., a leading geosynthetic manufacturer in the world, from 1997 to 2001. Prof. Han’s research and practical experiences have dealt with geosynthetics-reinforced earth structures, ground improvement, pile foundations, and pavement applications. Prof. Han has coauthored three technical books, edited two ASCE Geotechnical Special Publications, and published more than 150 peer-reviewed journal papers and conference papers (a large portion on geosynthetics). Prof. Han is currently serving as the Technical and Proceedings Co-chair for the GeoFrontiers 2011 Conference to be held in Dallas, Texas, USA from March 13 to 16, 2011, which is jointly organized by the ASCE Geo-Institute, the Industrial Fabrics Association International, the North American Geosynthetic Society, and the geosynthetic industry. Prof. Han serves as a member on the editorial boards for four major international journals in geotechnical engineering, the ASCE Geosynthetic and Ground Improvement Committees, and TRB A2K07 Committee on Geosynthetics.
Since the early use of fabrics to reinforce roads by the South Carolina Highway Department in the USA in 1920s, geosynthetics have been successfully adopted as reinforcements in many civil engineering applications, ranging from slopes, earth retaining walls, embankments, foundations, landfills, roads, earth structures for river and coastal protection, etc. This special issue focusing on geosynthetic-reinforced earth structures contains several technical papers contributed by a combination of internationally well-known experts and young, energetic researchers and/or engineers in these areas from China, Japan, Malaysia, Singapore, and the United States. They present past successes, recent developments, and/or issues in the design, modeling/analysis, construction, and performance evaluation of geosynthetic-reinforced earth structures.

Prof. Dov Leshchinsky at the University of Delaware in the USA, an internationally well-known expert in geosynthetics, slopes, and walls, offers his broad and in-depth views on some issues related to the design of mechanically-stabilized earth walls and slopes. Issues include discussion on the artificial separation between reinforced walls and slopes, deficient seismic design of reinforced earth structures, and difficulties associated with feedback from field data and its implications on design of reinforced earth walls. Prof. Leshchinsky offers the solutions to these issues including the adoption of reinforced slope design method for reinforced walls and reduced seismic coefficients with limit equilibrium analysis for seismic design of reinforced earth structures. Prof. Leshchinsky emphasizes the importance of following the principles of statics in the development of design methods from field data.

Dr. Teik Aun Ooi at TAO Consultant and Mr. C.H. Tee at Mega Geoproducts and Services have many years’ practical experience in design and construction of geosynthetic-reinforced earth walls and steep slopes in Malaysia. They share their rich experience and knowledge accumulated through years of practice in their technical paper. They present various case histories of slope repair and the role of geosynthetic reinforcement in the slope reconstruction and performance.

Prof. Jinchun Chai at Saga University in Japan has developed a number of design methods well adopted in practice for ground improvement. In his paper included in this special issue, Prof. Chai proposed a method for predicting undrained shear strength of saturated clayey backfill in an embankment reinforced by dual function (reinforcement and drainage) geocomposites, which is used to calculate the factor of safety of the reinforced embankment. The proposed method considers the effects of discharge capacity of the geocomposite, spacing between geocomposite layers, construction speed, and the coefficient of consolidation of the backfill.

Dr. Jie Huang, an assistant professor at the University of Texas at San Antonio, Dr. Anil Bhandari, a project manager at Terracon (a major geotechnical firm in the USA), and Dr. Xiaoming Yang, a research associate at Louisiana Transportation Research Center, are three active young researchers and engineers in geotechnical engineering. They jointly contribute a technical paper to review and summarize the numerical modeling techniques (FEM, FDM, and DEM) to model and analyze geosynthetic-reinforced earth structures including MSE walls, reinforced slopes and embankments, and reinforced unpaved and paved roads.
Acknowledgement

A number of theme oriented special issues are introduced in 2011 and the first one is released in March 2011 on Geosynthetic–reinforced earth structures. The Guest Editor of this issue is Prof. Jie Han of the Department of Civil, Environmental, and Architectural Engineering at the University of Kansas in the United States. He received his Ph.D. degree in Civil Engineering from the Georgia Institute of Technology in 1997 and has been a professional engineer in Georgia since 1998. Dr. Han was a senior engineer and manager of technology development at Tensar Earth Technologies, Inc., a leading geosynthetic manufacturer in the world, from 1997 to 2001. Prof. Han’s research and practical experiences have dealt with geosynthetic-reinforced earth structures, ground improvement, pile foundations, and pavement applications. Prof. Han has co-authored three technical books, edited two ASCE Geotechnical Special Publications, and published more than 150 peer-reviewed journal papers and conference papers (a large portion on geosynthetics). Prof. Han is currently serving as the Technical and Proceedings Co-chair for the GeoFrontiers 2011 Conference to be held in Dallas, Texas, USA from March 13 to 16, 2011, which is jointly organized by the ASCE Geo-Institute, the Industrial Fabrics Association International, the North American Geosynthetic Society, and the geosynthetic industry. Prof. Han serves as a member on the editorial boards for four major international journals in geotechnical engineering, the ASCE Geosynthetic and Ground Improvement Committees, and TRB A2K07 Committee on Geosynthetics.

The papers in this issue are authored by well known researchers and practitioners: D. Leshchinsky; T.A. Ooi and C.H. Tee; J.-C. Chai, T. Hino, Y. Igaya, and Y. Yamauchi; J. Huang, A. Bhandari, and X. Yang; J. Chu, W. Guo, and S.W. Yan; Y.M. Chen, W.A. Lin, B. Zhu, and L.T. Zhan; and J. Han, Y. Zhang, and R.L. Parsons.

The papers contained in this issue by the well known authors will undoubtedly be of great interest to engineers and scientists. On behalf of the Association of Geotechnical Societies in Southeast Asia, the Southeast Asian Geotechnical Society and the Editorial panel of the Geotechnical Engineering Journal we express our sincere gratitude to the Guest Editor Prof. Jie Han and the contributing authors.

K.Y. Yong
D. Bergado
Teik Aun Ooi
A. S. Balasubramaniam
Prof. Jian Chu at Nanyang Technological University in Singapore and Prof. Shuwang Yan at Tianjin University in China are internationally well-recognized for their research in ground improvement, coastal protection, and land reclamation. Together with Prof. Chu’s student, Wei Guo, they contribute a technical paper on recent advances in the research and practice using geosynthetic tubes and geosynthetic mats for the construction of river and coastal structures.

Prof. Yunmin Chen at Zhejiang University is a leading geotechnical engineering researcher in China. Prof. Chen and his colleagues have been involved in the research and consulting of several major landfills in China. Their technical paper addresses the issues related to the performance-based design of geosynthetic liner systems in landfills, including the breakthrough time, interface sliding failure, and liner tensile failure.

Prof. Jie Han at the University of Kansas in the USA is the guest editor of this special issue. He, his former graduate student, Mr. Yuze Zhang, and his colleague, Prof. Robert L. Parsons contribute a technical paper on laboratory evaluation of geosynthetic-soil confinement using a wheel tracking device. Their paper discusses a newly-developed performance-based laboratory test method to evaluate geosynthetic-soil confinement and distinguish the benefits of rut reduction among different types of geosynthetics and base course materials.

Jie Han

Guest Editor
GEOTECHNICAL ENGINEERING

TABLE OF CONTENTS

Special Issue on Geosynthetic-reinforced Earth Structures

Guest Editor: Jie Han

<table>
<thead>
<tr>
<th>Paper Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Some Issues in Geosynthetic Reinforced Walls and Slopes</td>
<td>1–8</td>
</tr>
<tr>
<td>by D. Leshchinsky</td>
<td></td>
</tr>
<tr>
<td>Advance in Geogrid Reinforced Slopes in Malaysia by</td>
<td>9–34</td>
</tr>
<tr>
<td>T.A. Ooi and C.H. Tee</td>
<td></td>
</tr>
<tr>
<td>Embankment Construction with Saturated Clayey Fill Material Using Geocomposites</td>
<td>35–41</td>
</tr>
<tr>
<td>by J.-C. Chai, T. Hino, Y. Igaya, and Y. Yamauchi</td>
<td></td>
</tr>
<tr>
<td>by J. Huang, A. Bhandari, and X. Yang</td>
<td></td>
</tr>
<tr>
<td>Geosynthetic Tubes and Geosynthetic Mats: Analyses and Applications</td>
<td>56–65</td>
</tr>
<tr>
<td>by J. Chu, W. Guo, and S.W. Yan</td>
<td></td>
</tr>
<tr>
<td>Performance-based Design for Geosynthetic Liner Systems in Landfills</td>
<td>66–73</td>
</tr>
<tr>
<td>by Y.M. Chen, W.A. Lin, B. Zhu, and L.T. Zhan</td>
<td></td>
</tr>
<tr>
<td>Quantifying the Influence of Geosynthetics on Performance of Reinforced Granular Bases in Laboratory</td>
<td>74–83</td>
</tr>
<tr>
<td>by J. Han, Y. Zhang, and R.L. Parsons</td>
<td></td>
</tr>
</tbody>
</table>
GEOTECHNICAL ENGINEERING

Journal of the
SOUTHEAST ASIAN GEOTECHNICAL SOCIETY
&
ASSOCIATION OF GEOTECHNICAL SOCIETIES IN SOUTHEAST ASIA

Sponsored by
ASIAN INSTITUTE OF TECHNOLOGY

Guest Editor
Prof. Tatsunori Matsumoto
June Issue: Guest Editors on Foundations
Edited by Prof. Tatsunori Matsumoto

A special issue on Deep Foundations is also planned and to be edited by Prof. Tatsunori Matsumoto with the assistance of Dr. Der Wen Chang and this is expected in June 2011. Professor Harry G. Poulos, Prof. Bengt Fellenius and several others are expected to contribute in this issue together with Prof. Tatsunori Matsuoka.

Prof. Matsumoto is now with Kanazawa University in Japan for nearly 32 years. He was educated at the Kanazawa University and received his Doctoral Degree from Kyoto University for his work on steel pipe piles in 1989. He has extensive research and practical experience on piled foundations and piled raft foundations. Prof. Matsumoto has a Shake Table Facility for the study of dynamic and earthquake type of behaviour of piled foundations. He has also worked on the centrifuge with pile groups and piled raft foundations in collaboration with Taisei Corporation. His research work on piled raft foundations range from the simplified calculation methods of Poulos - Davis and Randolph (PDR Method), Burland’s method to approximate computer based methods such as the strip on spring and plate on spring approaches and hybrid methods. He has also worked on more rigorous method using boundary elements and finite elements. Prof. Matsumoto also has wide experience in the seismic design of raft and piled raft foundations. Prof. Matsumoto is one of the authors of the computer software PRAB—Piled Raft Analysis with Batter Piles. With this software piled raft foundation can be analyzed with vertical and horizontal loads as well as moment.
GEOTECHNICAL ENGINEERING

FOREWORD

The Southeast Asian Geotechnical Society (SEAGS) was formed over 40 years ago and has been an important factor in the growth of geotechnical engineering in the Southeast Asian region. SEAGS has made a very important contribution to the dissemination of geotechnical knowledge by publishing the journal Geotechnical Engineering, which first appeared in 1970. A number of influential papers have appeared in this journal, generally dealing with regional issues and case histories but also with geotechnical problems on a global scale.

In recent years, several of the original countries comprising SEAGS have grown to such an extent that they have formed their own national geotechnical groups. A number of these countries have formed the Association of Geotechnical Societies of South East Asia (AGSSEA) which now interact and cooperate with SEAGS. Currently, the President of SEAGS and Chairman of AGSSEA are Dr. Ooi Teik Aun and Professor K.Y. Yong respectively, while the Secretaries General are Professor Dennes Bergado and Mr. Kenny Yee.

SEAGS and AGSSEA now cooperate in producing Geotechnical Engineering, and in order to respond to the growth of geotechnics in the region, the editors have decided to re-focus the journal and to produce a series of theme issues that deal with specific areas of geotechnical engineering.

This present issue deals with deep foundations, a subject that has been of abiding interest to engineering professionals in the region over many years. Indeed, with the remarkable growth in the number and height of structures, studies of deep foundations and their behaviour under various scenarios have become a matter not only of research interest, but also of intense practical and economic interest. It is being recognised increasingly that traditional methods of deep foundation design that may have been adequate in past times may not be suitable for today’s circumstances, where much larger loads may be acting on the piles and where piles may be subjected not only to direct structural loads but to loads imposed by ground movements arising from such sources as earthquakes, excavations and tunnel construction. It is also being recognised that in such cases, the sources of movement may also change the stress state in the ground so that the ground conditions during and after construction may be different from those encountered during the site investigation. Such differences need to be recognised and allowed for in the design process. It must also be recognised that there may well be “side effects” that arise from construction-related ground movements that may adversely affect existing foundation.

A further trend, and one that is to be applauded, is the increasing use of pile load testing, not only as a means of verifying the capacity and integrity of the as-constructed piles, but also as an adjunct to pile design. Many of the elements of uncertainty that are present in pile design may be reduced by carrying out tests on trial piles as part of the design process. However, in such cases, it is essential to understand the limitations of the test procedure being and to interpret the test results accordingly, taking into account the test configuration and test setup, the means of applying load and supplying reaction, and the means of measurement of the pile responses. In particular, care should be taken to allow for residual stresses that exist in the pile prior to testing, as failure to do so may lead to misinterpretation of the contributions to the pile resistance of the shaft and the base.

The nine papers in this issue cover a broad range of topics in deep foundations, including load testing (3 papers), analysis and design issues (2 papers), fundamental understanding of pipe pile behaviour (1 paper), piled raft foundations (2 papers), and two case histories, one involving the foundations for the Taipei 101 tower, formerly the world’s tallest building, and the other a proposed 151 storey tower in South Korea.

Professor Tatsunori Matsumoto from Japan is the editor for this issue and has been instrumental in attracting the papers that appear here, and especially, in securing a number of papers from Japan. He has done a fine job in coaxing and encouraging the authors of the papers, arranging for the review of the papers, and editing the final manuscripts. He deserves the thanks of the journal readership for his untiring efforts. He has been assisted by
Professor Der-Wen Chang of Taiwan, and by Professor Balasubramaniam (Bala), from Australia, whose links with SEAGS extend over many years.

It is to be hoped that the readers of this issue will benefit from the information and knowledge that is contained within the papers, and that they may find occasion to apply this knowledge in their own professional practice.

H.G. Poulos
ACKNOWLEDGEMENT

This Special Issue on Deep Foundations is edited by Prof. Tatsunori Matsumoto with the assistance of Prof. Der Wen Chang as co-editor. Prof. Matsumoto is with Kanazawa University for nearly 32 years and has made excellent contributions in Piled Foundations starting with his Doctoral Research at Kyoto University on steel pipe piles as early as 1989. He has extensive research and practical experience on piled foundations and piled raft foundations. Prof. Matsumoto has a Shake Table Facility for the study of dynamic and earthquake type of behaviour of piled foundations. He has also worked on the centrifuge with pile groups and piled raft foundations in collaboration with Taisei Corporation. His research work on piled raft foundations range from the simplified calculation methods of Poulos - Davis and Randolph (PDR Method), Burland’s method to approximate computer based methods such as the strip on spring and plate on spring approaches and hybrid methods. He has also worked on more rigorous method using boundary elements and finite elements. Prof. Matsumoto also has wide experience in the seismic design of raft and piled raft foundations. Prof. Matsumoto is one of the authors of the computer software PRAB — Piled Raft Analysis with Batter Piles. With this software piled raft foundation can be analyzed with vertical and horizontal loads as well as moment. The co-editor Prof. Der Wen Chang is currently a Professor at the Tamkang University in Taiwan. Prof. Chang received his Doctoral Degree from University of Texas at Austin in 1991. His research interests are in soil-structure interaction, earthquake geotechnical engineering and soil dynamics. Prof. Chang is a valuable member of the Chinese Geotechnical Society in Taipei serving as Secretary General; he also played a key role in the 17th Southeast Asian Geotechnical Conference held in Taipei in May 2010.

The contributing authors in this issue are: Kiyoshi Yamashita, Junji Hamada and Takeshi Yamada; K. Watanabe, H. Sei, T. Nishiyama and Y. Ishii; N. Suzuki and T. Seki; K. Matsuzawa and T. Matsumoto; Suriyah Thongmunee, Shun-ichi Kobayashi and Tatsunori Matsumoto; Ching-Han Yu; Bengt H. Fellenius; H.G. Poulos, J.C. Small and H. Chow; and Ahmad Abdelrazaq, Frances Badelow, Sung Ho-Kim, and Harry G. Poulos.

Special thanks are due to Prof. Harry G Poulos for his valuable advice and participation in the review of most of the papers; each paper is reviewed at least by two other reviewers. No doubt the papers contained in this issue will be of great interest to those in practices as well as in teaching and research. On behalf of the Association of Geotechnical Societies in Southeast Asia, the Southeast Asian Geotechnical Society and the Editorial Panel of the Geotechnical Engineering Journal, we express our sincere gratitude to the Editors Prof. Tatsunori Matsumoto, Prof. Der Wen Chang, Prof. Harry G. Poulos and the contributing authors and reviewers.

K.Y. Yong
D.T. Bergado
T.A.Ooi
A.S.Balasubramaniam
TABLE OF CONTENTS

Special Issue on Pile Foundations

Guest Editor: Tatsunori Matsumoto

<table>
<thead>
<tr>
<th>Paper Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Measurements on Piled Rafts with Grid-Form Deep Mixing Walls on Soft Ground</td>
</tr>
<tr>
<td>by Kiyoshi Yamashita, Junji Hamada and Takeshi Yamada</td>
</tr>
<tr>
<td>Pages 1-10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paper Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Axial Reciprocal Load Test of Cast-in-place Nodular Concrete Pile and Nodular Diaphragm Wall</td>
</tr>
<tr>
<td>by K. Watanabe, H. Sei, T. Nishiyama and Y. Ishii</td>
</tr>
<tr>
<td>Pages 11-19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paper Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical Load Test and Settlement Analysis of Cast-in-place Concrete Nodular Piles Supporting a High-Rise Building</td>
</tr>
<tr>
<td>by N. Suzuki and T. Seki</td>
</tr>
<tr>
<td>Pages 20-28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paper Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extended Use of Spring Hammer Rapid Load Testing</td>
</tr>
<tr>
<td>by K. Matsuzawa and T. Matsumoto</td>
</tr>
<tr>
<td>Pages 29-42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paper Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Push-up Load Tests Using Uncrushable Particles and Its DEM Analyses</td>
</tr>
<tr>
<td>by Suriyah Thongmunee, Shun-ichi Kobayashi and Tatsunori Matsumoto</td>
</tr>
<tr>
<td>Pages 43-55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paper Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Design and Construction of Pile Group Foundation of Taipei 101</td>
</tr>
<tr>
<td>by Ching-Han Yu</td>
</tr>
<tr>
<td>Pages 56-69</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paper Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity versus Deformation Analysis for Design of Footings and Pile Foundations</td>
</tr>
<tr>
<td>by Bengt H. Fellenius</td>
</tr>
<tr>
<td>Pages 70-77</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paper Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pile Raft Foundations for Tall Buildings</td>
</tr>
<tr>
<td>by H.G. Poulos, J.C. Small and H. Chow</td>
</tr>
<tr>
<td>Pages 78-84</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paper Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundation Design of the 151 Story Incheon Tower in a Reclamation Area</td>
</tr>
<tr>
<td>by Ahmad Abdelrazaq, Frances Badelow, Sung Ho-Kim, Harry G. Poulos</td>
</tr>
<tr>
<td>Pages 85-93</td>
</tr>
</tbody>
</table>
This special issue has papers from China, Taiwan, Bangkok, Hong Kong, Singapore etc.

Prof. Chang-Yu Ou received his Bachelor’s Degree in Engineering in 1977 from National Cheng-Kung University in Taiwan and his Masters and Doctoral Degrees from Stanford University in 1984 and 1987 respectively. He has focused on studies of soil behaviour and excavation problems since beginning to teach in a university and has published many journal and conference papers concerning the subjects. At the same time, working with industrial builders, he has also taken part in many large-scale excavation projects and accumulated experience in analysis and design. Supported by study results and analysis experience, he has opened a course on deep excavation at the university.

He is currently the Dean of engineering at the National Taiwan University of Science and Technology, Taipei, Taiwan. He was also the Director of Ecological and Hazard Mitigation Engineering Research Center of the National Taiwan University of Science and Technology, Taipei, Taiwan. He was also a Visiting Professor at University of California, Berkeley. His areas of interest are deep excavations, soil behaviour, soft ground tunnelling and ground improvement.
Asia currently is the most fast growing area in economy. Many high rise buildings and infrastructures including subway tunnels in urban areas and mountain tunnels connecting cities are under construction. Some of them are extraordinary in terms of scale and construction difficulty. The strength and stress-strain behavior of soils are seriously considered and monitoring systems are comprehensively implemented in projects. Therefore, as a guest editor of this special issue featuring the urban geotechnical construction, I am very happy to have the papers from distinguished investigators from China, Korea, Singapore and Taiwan. Many thanks for their contribution.

This special issue covers some important aspects of urban geotechnical construction. One of the biggest issues for underground construction in a densely built-up urban environment is the potentially adverse impact on buildings adjacent to deep excavations. Thanks for Mr. Goh and Prof. Mair who present the influence of building stiffness in the assessment of adjacent building safety. Excavation instability sometimes causes catastrophic collapse of the projects. Prof. Zheng and his group introduce the concept of redundancy into the design of retaining structure and develop a design methodology based on the concept of redundancy. Prof. Jeng and his colleagues give a very interesting case study of the largest excavation in Shanghai soft clay. In urban areas, excavations may have a significant impact on the stress and deformation of existing tunnels. Several construction techniques have been developed to reduce the movement of excavations in soft clay. Prof. Wang and his group made a comprehensive study of the effectiveness of these different methods and the interactive impact of the two adjacent excavations in Shanghai soft clay on the crossing tunnel using the numerical method. In the past studies of ground movement induced by deep excavations mostly focus on those due to main excavation, for example, excavation of soil, dewatering, strut installation and demolish and so on. Ground movement induced by diaphragm wall construction is seldom taken into account. Prof. Ou and his group present the behavior of ground movement induced by construction of diaphragm wall based on the monitoring results of the construction of the Taipei metro system. The envelope due to diaphragm wall construction is established in the paper. In the traditional pneumatic caissons, workers have to conduct excavation inside the working chamber under high pressure, temperature, and humidity while in the new pneumatic caissons, soil excavation and removal are completed by remotely controlled equipments. Prof. Peng and his colleagues report the monitored results for the new pneumatic caisson conducted in Shanghai soft clay and numerical approach considering the soil disturbance during construction. The agreement between field monitoring and numerical analysis results are discussed. In densely popular cities, construction of underground tunnels should be kept minimal impact on existing buildings. Instead of shield machines, use of hydraulic jacks to push pipes through the ground is an economic and minimal impact on the existing buildings. Prof. Ding and his coworkers introduce the technologies of pipe-jacking methods to reach micro disturbance to existing buildings. Inje Tunnel, an 11 km-long twin-tunnel, still under construction, will be the longest road tunnel in Korea. Director Cho introduces the details of the tunnel design, including geotechnical consideration, cross-section of the excavation, reinforcement, drainage, ventilation operation, safety facility corresponding with a tunnel fire, and portal planning.

Finally, I would like thank all of the reviewers, who gave excellent and in-depth reviews on the papers. Thanks to the editor-in-chief, Prof. Balasubramaniam, for his gracious invitation as the guest editor of this special issue.

Prof. Chang Yu Ou
Guest Editor
ACKNOWLEDGEMENT

This September Issue of the Journal is on Urban Geotechnical Construction. This Issue has papers from China, Korea, Singapore and Taiwan. The Guest Editor of this Issue is Prof. Chang Yu Ou, who received his Bachelor’s Degree in Engineering in 1977 from National Cheng-Kung University in Taiwan and his Masters and Doctoral Degrees from Stanford University in 1984 and 1987 respectively. Prof. Ou has focused on studies of soil behaviour and excavation problems since beginning to teach in a university and has published many journal and conference papers concerning the subjects. At the same time, working with industrial builders, he has also taken part in many large-scale excavation projects and accumulated experience in analysis and design. Supported by study results and analysis experience, he has opened a course on deep excavation at the university. He is currently the Dean of engineering at the National Taiwan University of Science and Technology, Taipei, Taiwan. He was also the Director of Ecological and Hazard Mitigation Engineering Research Centre of the National Taiwan University of Science and Technology, Taipei, Taiwan. He was also a Visiting Professor at University of California, Berkeley. His areas of interest are deep excavations, soil behaviour, and soft ground tunnelling and ground improvement. We are most grateful to have such an eminent person as Prof. Ou to be the Guest Editor of this Issue.

There are eight technical papers from: K.H. Goh and R.J. Mair; G. Zheng, X.S. Cheng, Y. Diao, and H.X. Wang; Y. M. Hou, J. H. Wang and D-S. Jeng; J. J. Chen, J. H. Wang, G. W. Xiang, S. L. Wen, and Y. Du ; C.Y. Ou and L.L. Yang; F.L. Peng and H.L. Wang; W. Q. Ding, B. Li, S. L. Yuan and J. K. Ge; S. M. Cho, S. D. Lee, and Y. J. Kwon. We are confident that this special issue would be of great interest to all those who are interested in urban geotechnical construction. The most valued help and the untiring efforts and meticulous work of the Guest Editor Prof. Chang Yu Ou and the authors are gratefully acknowledged.

K.Y. Yong
D.T. Bergado
T.A.Ooi
A.S.Balasubramaniam
GEOTECHNICAL ENGINEERING

Special Issue on DEEP EXCAVATIONS

Guest Editor: Prof. Chang-Yu Ou

TABLE OF CONTENTS

List of Papers Page

Building Damage Assessment for Deep Excavations in Singapore and the Influence of
Building Stiffness
by K.H. Goh and R.J. Mair ... 1-12

Concept and Design Methodology of Redundancy in Braced Excavation and Case Histories

Three-Dimensional Deformation Behavior of an Over-sized Excavation in Shanghai Clay
by Y. M. Hou, J. H. Wang and D-S. Jeng .. 22-29

Numerical Study on the Movement of Existing Tunnel Due to Deep Excavation in Shanghai

Observed Performance of Diaphragm Wall Construction
by C.Y. Ou and L.L. Yang ... 41-49

Performance of Construction with New Pneumatic Caisson Method in Shanghai Soft Ground
by F.L. Peng and H.L. Wang ... 50-58

Technologies of Micro-disturbance Construction of Pipe-Jacking
by W. Q. Ding, B. Li, S. L. Yuan and J. K. Ge ... 59-64

Design and Construction of InJe Tunnel, the Longest Road Tunnel of Korea
by S. M. Cho, S. D. Lee, and Y. J. Kwon .. 65-74
Hollow Cylindrical Torsional Apparatus (after Ibraim et al., 2011)

SEM Image of Residual Soil of Singapore Bukit Timah Granite, (after Meng & Chu, 2011)

Local small strain measurement systems (after Ibraim et al., 2011)

Hollow Cylindrical Torsional Apparatus (after Ibraim et al., 2011)
Dr Dariusz Wanatowski is currently a lecturer in the Nottingham Centre for Geomechanics at the University of Nottingham in the United Kingdom.

Dr Wanatowski obtained his Master’s Degree in Civil Engineering in 1999 from the Poznan University of Technology (PUT) in Poland and his Doctoral Degree in Geotechnical Engineering in 2006 from Nanyang Technological University (NTU) in Singapore. Prior to joining the University of Nottingham in February 2006, he worked as a lecturer and researcher in PUT in Poland and NTU in Singapore, respectively. In 2010, he was a Visiting Fellow at the University of New South Wales at Australian Defence Force Academy in Canberra and a Visiting Lecturer at NTU in Singapore. Most recently, in October 2011, he was also a Visiting Professor at University of Bologna in Italy.

Dr Wanatowski's general research interests are focused on experimental geomechanics, particularly strain softening and instability behaviour of granular soils, strain localization in sands, strength and stiffness anisotropy of geomaterials, and effects of intermediate principal stress on the strength and deformation characteristics of soils. He has published several journal and conference papers on these subjects. He has also consulting experience in the areas of advanced laboratory and in situ testing of soils.

Dr Wanatowski is a Member of two Technical Committees of the International Society for Soil Mechanics and Geotechnical Engineering, TC-208 on Stability of Natural Slopes and TC-303 Coastal and River Disaster Mitigation and Rehabilitation. He is a Member of American Society of Civil Engineers, Institution of Civil Engineering, Southeast Asian Geotechnical Society and Polish Geotechnical Society. He also serves as an Honorary Secretary for the East Midlands Geotechnical Group in the British Geotechnical Association.
Despite a remarkable research progress made in the last few decades in various aspects of geomechanics, understanding of soil as an engineering material is still a very challenging task. Consequently, our ability to model and predict the behaviour of geomeaterials in slopes, foundations, and earth structures is still limited. On the other hand, an enormous improvement in technical capabilities of soil mechanics laboratories in last few years allows researchers and engineers to investigate soil behaviour with greatest ever accuracy. As a result, advanced laboratory soil testing is more frequently used in geotechnical practice. For example, an accurate measurement of small strain stiffness is essential in the analysis of many geotechnical problems.

This Special Issue covers some very interesting aspects of soil behaviour and includes papers from Poland, Singapore, United States, Greece, Japan, Hong Kong, United Kingdom and Hungary. The Issue starts with the contribution of Prof. Sawicki from the Institute of Hydro-Engineering in Poland. His paper discusses possible links between pre-failure instability behaviour of sand and plastic dilation. The analysis presented by Prof. Sawicki is supported by high-quality experimental data obtained from triaxial compression tests. The second paper is written by Dr Meng from the University of Wollongong in Australia and Prof. Chu from Nanyang Technological University, who has recently taken up the Chair in Geotechnical Engineering at the Iowa State University in the United States. The authors present an experimental study on strength anisotropy of the intact residual soil of Bukit Timah granite in Singapore. The results obtained from K0 consolidated undrained triaxial and simple shear tests carried out on specimens cut from large blocks of undisturbed samples are used to discuss the effects of inherent and induced anisotropy on the strength parameters of the residual soil in Singapore. Prof. Lade from the Catholic University of America in the United States and Dr Wang, his former PhD student at the Johns Hopkins University, present their work on shear banding in sand. The authors discuss several series of true triaxial tests performed on cubical and rectangular prismatic specimens of Santa Monica Beach sand. The analysis carried out by Prof. Lade and Dr Wang indicates that the occurrence of the critical conditions for shear banding in sand may be delayed in short specimens. The authors suggest that true triaxial experiments should be performed on tall specimens in which the shear banding occurs freely and strain softening behaviour is more pronounced. A very interesting study on behavioural patterns of fine sands is presented by Prof. Georgiannou from the National Technical University of Athens in Greece. In her paper, Prof. Georgiannou presents several series of hollow cylinder, triaxial compression and extension tests. She discusses the influence of various parameters such as particle shape, grading, addition of fines, consolidation history, stress level and loading conditions on the undrained behaviour of sand. Next paper of the Issue is written by Prof. Shibuya from Kobe University in Japan and his former researcher, Dr Jung, currently with the Korean Institute of Construction Technology. They discuss the effects of strain rate on undrained shear behaviour of seabed Holocene clay from the Kobe airport based on a few series of triaxial compression and extension tests carried out with different shearing rates. Prof. Yin and Mr Tong from the Hong Kong Polytechnic University together with Prof. Zhu from Wuhan University of Technology in China present an experimental investigation on sedimentation and self-weight consolidation behaviour of marine deposits from Hong Kong carried out in settling columns. Dr Ibrahim and his colleagues from the Bristol University in the United Kingdom present their new hollow cylinder torsional apparatus equipped with an accurate strain measurement system. The authors demonstrate that their hollow cylinder apparatus is capable of measuring soil’s stiffness in a wide range of strains and stresses. Two of my PhD students at the University of Nottingham and I contribute to the Special Issue with a paper on laboratory investigation of fibre reinforced sand at high pressures. We discuss results of drained compressions tests carried out in a high pressure triaxial cell and demonstrate that the effectiveness of fibre reinforcement at high confining pressures is very limited. Finally, Prof. Imre from Szent Istvan University and Budapest University of Technology and Economics in Hungary with her colleagues presents a technical note discussing the ratio of the maximum and minimum dry density for sands.

As a Guest Editor of this Issue I would like to thank all the authors for their valuable contributions. I would also like to thank the Editorial Team of the Journal for inviting me to edit this Special Issue. Last but not least, I would like to thank all the reviewers for assessing the papers in a timely and thorough manner. Their excellent assistance is greatly appreciated.

Dariusz Wanatowski,
Guest Editor
University of Nottingham, United Kingdom
ACKNOWLEDGEMENT

This December Issue of the Journal is on Soil Behaviour and include papers from well known researchers as drawn from Poland, Singapore, United States, Greece, Japan, Hong Kong, United Kingdom and Hungary.

The Guest Editor of this Issue is Dr. Dariusz Wanatowski from the Nottingham Centre for Gmechanics at the University of Nottingham in the United Kingdom. Dr Wanatowski’s general research interests are focused on experimental geomechanics; particularly strain softening and instability behaviour of granular soils, strain localization in sands, strength and stiffness anisotropy of geomaterials, and effects of intermediate principal stress on the strength and deformation characteristics of soils. He has published very widely in most well known journals in Geotechnics and the major conferences held on soil behaviour and its role in geotechnical engineering research and practice. Dr Wanatowski obtained his Master’s Degree in Civil Engineering in 1999 from the Poznan University of Technology (PUT) in Poland and his Doctoral Degree in Geotechnical Engineering in 2006 from Nanyang Technological University (NTU) in Singapore. Prior to joining the University of Nottingham in February 2006, he worked as a lecturer and researcher in PUT in Poland and NTU in Singapore, respectively. In 2010, he was a Visiting Fellow at the University of New South Wales at Australian Defence Force Academy in Canberra and a Visiting Lecturer at NTU in Singapore. Most recently, in October 2011, he was also a Visiting Professor at University of Bologna in Italy.

Dr Wanatowski is a Member of two Technical Committees of the International Society for Soil Mechanics and Geotechnical Engineering, TC-208 on Stability of Natural Slopes and TC-303 Coastal and River Disaster Mitigation and Rehabilitation. He also serves as an Honorary Secretary for the East Midlands Geotechnical Group in the British Geotechnical Association. Dr Wanatowski is a Member of American Society of Civil Engineers, the Institution of Civil Engineers London, and the Southeast Asian Geotechnical Society and the Polish Geotechnical Society.

The nine technical contributions in this issue are from: A. Sawicki G. Meng and J. Chu ;P.V. Lade and Q. Wang V.N. Georgiannou M.-S. Jung and S. Shibuya; F. Tong, J.H.Yin and G.F. Zhu ; E. Ibraim, P. Christiaens and M. Pope ;S. Ud-din, A. Marri and D. Wanatowski ; and E. Imre, S. Fityus, E. Keszeyne and T. Schanz. Soil Behaviour is a most important topic in Geotechnical Engineering and the material contained here from these authors would be of great value to all those who are engaged in geotechnical engineering practice and research. Dr. Dariusz Wanatowski, the guest editor is thanked for his untiring efforts and meticulous work which made this special issue to be possible and released well in time.

K.Y. Yong
D.T. Bergado
T.A.Ooi
A.S.Balasubramaniam
GEOTECHNICAL ENGINEERING

Special Issue on Soil Behaviour
Guest Editor: Dr. Dariusz Wanatowski

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>List of Papers</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Papers:</td>
<td></td>
</tr>
<tr>
<td>Dilation and Stability of Sand in Triaxial Tests</td>
<td>1 - 9</td>
</tr>
<tr>
<td>by A. Sawicki</td>
<td></td>
</tr>
<tr>
<td>The Strength Anisotropy of a Residual Soil in Singapore</td>
<td>10 - 18</td>
</tr>
<tr>
<td>by G. Meng and J. Chu</td>
<td></td>
</tr>
<tr>
<td>Effect of Boundary Conditions on Shear Banding in True Triaxial Tests on Sand</td>
<td>19 - 25</td>
</tr>
<tr>
<td>by P.V. Lade and Q. Wang</td>
<td></td>
</tr>
<tr>
<td>Behavioural Patterns of Fine Sands</td>
<td>26 - 41</td>
</tr>
<tr>
<td>by V.N. Georgiannou</td>
<td></td>
</tr>
<tr>
<td>Simulating Shear Rate-Dependent Undrained Stress-Strain Behaviour of Natural Sedimentary Clay at Kobe Airport</td>
<td>42 - 52</td>
</tr>
<tr>
<td>by M.-S. Jung and S. Shibuya</td>
<td></td>
</tr>
<tr>
<td>Experimental Investigation on Settling Behavior of Hong Kong Marine Deposits in Settling Column Condition</td>
<td>53 - 57</td>
</tr>
<tr>
<td>by F. Tong J.H. Yin and G.F. Zhu</td>
<td></td>
</tr>
<tr>
<td>Development of a Hollow Cylinder Torsional Apparatus for Pre-failure Deformation and Large Strains Behaviour of Sand</td>
<td>58 - 68</td>
</tr>
<tr>
<td>by E. Ibraim, P. Christiaens and M. Pope</td>
<td></td>
</tr>
<tr>
<td>Effect of High Confining Pressure on the Behaviour of Fibre Reinforced Sand</td>
<td>69 - 76</td>
</tr>
<tr>
<td>by S. Ud-din, A. Marri and D. Wanatowski</td>
<td></td>
</tr>
<tr>
<td>TECHNICAL NOTE</td>
<td></td>
</tr>
<tr>
<td>A Comment on the Ratio of the Maximum and Minimum Dry Density for Sand</td>
<td>77 - 82</td>
</tr>
<tr>
<td>by E. Imre, S. Fityus, E. Keszevne and T. Schanz</td>
<td></td>
</tr>
</tbody>
</table>
Miniature-tip tensiometers
Thetaprobes
1m
Load cell
Pneumatic actuator
Constant-head water supply system
Bottom valve

Figure 6. Experimental setup of the 1m high stress-controllable 1D soil column

To Kowloon
The site
Landslide body
Saprolitic hillslope for full-scale field monitoring in Hong Kong (Leung et al. 2011)

Probe locator for installing high capacity tensiometer (Toll et al. 2012)

Indirect tensile strength testing on dry soil specimen (Puppala et al. 2012)

Stress-controllable 1D soil column (Ng & Leung 2012)
March 2012 ISSUE ON UNSATURATED SOIL MECHANICS AND ENGINEERING

Charles W. W. Ng & Apiniti Jotisankasa
Guest Editors

PROFESSOR CHARLES W.W. NG is Chair Professor at the Department of Civil and Environmental Engineering and the Director of Geotechnical Centrifuge Facility at the Hong Kong University of Science and Technology. He obtained his Ph. D from the University of Bristol, UK in 1992; and subsequently joined the University of Cambridge as a Research Associate before returning to Hong Kong in 1995. He was elected as an Overseas Fellow at Churchill College, Cambridge, in 2005. Professor Ng is a Charted Civil Engineer (CEng) and Fellow of the Institution of Civil Engineers (FICE), the American Society of Civil Engineers (FASCE), the Hong Kong Institution of Engineers (FHKIE) and the Hong Kong Academy of Engineering Sciences (FHKEng). He holds the title of Chang Jiang Scholar (Chair Professorship) by the Ministry of Education in China and he is an appointed Board Member of the International Society of Soil Mechanics and Geotechnical Engineering. Currently Professor Ng is Associate Editor of the Canadian Geotechnical Journal. He has published widely on slope instability problems, behaviour and mechanics of saturated and unsaturated soils, soil-structure interaction problems such as tunnels, piles and deep excavations. He is the main author of two reference books including “Soil-Structure Engineering of Deep Foundations, Excavations” and “Tunnels and Advanced Unsaturated Soil Mechanics and Engineering”.

DR. APINITI JOTISANKASA is currently an Assistant Professor at the Department of Civil Engineering, Kasetsart University Bangkok. After obtaining his BEng degree in Civil Engineering from Kasetsart University in 1999, he pursued his MSc and PhD in Soil Mechanics at Imperial College London with the generous support of the Anandamahidol Scholarship from Thailand. His research topics for the PhD degree was on the Collapse behaviour of a compacted silty clay: the work which culminated in several world-leading journal papers such as Geotechnique, and the ASCE Journal of Geotechnical and Geoenvironmental Engineering. After being awarded the PhD degree in 2005, he started working for Kasetsart University as a lecturer in geotechnical engineering and his research area has been mainly on application of unsaturated soil mechanics on practical geotechnical engineering problems, such as rainfall-induced landslide, excavation, embankment stability, bio-slope engineering, geohazard mitigation, etc. He also lead a team consisting of geotechnical as well as electrical engineers who develop a wireless system for monitoring of slope behaviour such as pore water pressure (negative/positive) and slope movement. Dr Apiniti is the recipient of the Best paper award (Geotechnical Engineering) in the National Convention in Civil Engineering 2009 from the Thai Geotechnical Society and Chai Mukthabhan foundation for his work on the behaviour of instrumented volcanic soil slope subject to rainfall. In 2011, he was awarded the Young Technologist Award from the Foundation for the Promotion of Science and Technology under the Patronage of His Majesty the King of Thailand. Dr. Apiniti has been secretary general of the Thai Geotechnical Society since 2009 and currently a member of the TC106 (Unsaturated soils) of the International Society of Soil Mechanics and Geotechnical Engineering.
Most of the Earth’s land surface comprises unsaturated geomaterials, which often pose geotechnical hazards such as rainfall-induced landslides to societies and serviceability problems to high speed rail links founded on collapsible and expansive unsaturated soils. However, the vast majority of textbooks, conference proceedings and journal articles investigate mainly saturated soil mechanics, which is only a special case of unsaturated soil mechanics. With intensive building and construction activities in countries like China, India, Central and South America and Africa on foundation soils that are often unsaturated, geotechnical engineers can no longer ignore the complicated nature of unsaturated soils and the challenges they present. In developed countries, many geo-environmental problems such as nuclear waste disposal also involve unsaturated soil mechanics heavily. Research on unsaturated soils has therefore been a major focus in many universities and research institutions over the last two decades.

This special issue contains eight keynote papers selected from the 5th Asia-Pacific Conference on Unsaturated Soils held in Pattaya, Thailand, between 29 February and 2 March 2012. The series of Asia-Pacific Conferences on Unsaturated Soils began in Singapore in 2000. With the continued support of the Technical Committee on Unsaturated Soils (TC106) of the International Society of Soil Mechanics and Geotechnical Engineering (ISSMGE), the 2nd, 3rd, and 4th conferences were held in 2003 in Osaka, Japan, in 2007 in Nanjing, China and in 2009 in Newcastle, Australia, respectively. These conferences have proven to be a fruitful forum where researchers and practitioners in the region and beyond gathered enthusiastically to present their latest research findings and development and to exchange ideas on the subject.

Guest Editors
Charles W.W. Ng
Apiniti Jotisankasa
ACKNOWLEDGEMENT

This March 2012 Issue of the Journal is on Soil Behaviour of Unsaturated Soils and Engineering Applications and it includes papers from well known researchers as drawn from Thailand, United States of America, Hong Kong, Australia, Singapore and the United Kingdom.

The Guest Editors of this Issue are Prof. Charles W. W. Ng at the Department of Civil and Environmental Engineering in the Hong Kong University of Science and Technology and Dr. Apiniti Jotisankasa at the Department of Civil Engineering, Kasetsart University Bangkok. Both Editors are internationally well known for their research and professional activities in Unsaturated Soil Mechanics and Engineering.

We are fortunate to have eight excellent contributions by authors who have spent a life time with unsaturated soil mechanics and engineering from: W. Mairaing, A. Jotisankasa and S. Soralump; J.D. Nelson, K.C. Chao, D.D. Overton and R.W. Schaut; C. W. W. Ng and A. K. Leung; A.J. Puppala, T. Wejrungsikul, V. Puljan and T. Manosuthikij; H. Rahardjo, A. Satyanaga, E. C. Leong; J.R. Standing; D.G. Toll1, J. Mendes1, P.N. Hughes, S. Glendinning and D. Gallipoli3; and D.J. Williams. Among other topics it deals with the development of unsaturated soil mechanics as a discipline; unsaturated expansive soils and foundation problems; unsaturated soil slopes and stabilization measures; some mining applications of unsaturated soil mechanics and finally the most important area of climate change and the role of unsaturated soil mechanics in engineering applications.

The material contained in this issue of the journal would be of great value to engineers as well as researchers dealing with engineering activities in unsaturated soils. The Guest Editors Prof. Charles W.W. Ng and Dr Apiniti Jotisankasa and the contributors are thanked for their untiring efforts and meticulous work which made this special issue to be possible and released well in time. We have had great guest editors for the 2011 Issues as: Jie Han; Tatsunori Matsumoto, Der Wen Chang; Chang Yu Ou and Dariusz Wanatowski. It is a pleasure to begin the Year 2012 with this excellent issue with such eminent persons like Prof. Charles W. W. Ng and Dr Apiniti Jotisankasa. Likewise we look forward to the most valued help from Prof. Ikuo T_rwlockata, Prof Der Wen Chang, Dr. Ivan Gratechev; Prof. Malek Bouazza and Mr Tom Lunne and Prof de Groot for the June, September and December Issues.

K.Y. Yong
D.T. Bergado
T.A.Ooi
A.S.Balasubramaniam
Geotechnical Engineering

Special Issue on Unsaturated Soil Mechanics And Engineering

Guest Editors: Charles W. W. Ng & Apiniti Jotisankasa

Table of Contents

<table>
<thead>
<tr>
<th>List of Papers</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Some Applications Of Unsaturated Soil Mechanics In Thailand: An Appropriate Technology Approach
by W. Mairaing, A. Jotisankasa and S. Soralump</td>
<td>1 - 11</td>
</tr>
<tr>
<td>In-Situ And Laboratory Investigations Of Stress-Dependent Permeability Function And SDSWCC From An Unsaturated Soil Slope
by C. W. W. Ng and A. K. Leung</td>
<td>26 - 39</td>
</tr>
<tr>
<td>Measurements Of Shrinkage Induced Pressure (Sip) In Unsaturated Expansive Clays
by A.J. Puppala, T. Wejrungsikul, V. Puljan and T. Manosuthikij</td>
<td>40 - 47</td>
</tr>
<tr>
<td>Unsaturated Soil Mechanics For Slope Stabilization
by H. Rahardjo, A. Satyanaga, E. C. Leong</td>
<td>48 - 58</td>
</tr>
<tr>
<td>The Development Of Unsaturated Soil Mechanics At Imperial College, London
by J.R. Standing</td>
<td>59 - 75</td>
</tr>
<tr>
<td>Climate Change And The Role Of Unsaturated Soil Mechanics
by D.G. Toll1, J. Mendes1, P.N. Hughes, S. Glendinning and D. Gallipoli</td>
<td>76 - 82</td>
</tr>
<tr>
<td>Some Mining Applications Of Unsaturated Soil Mechanics
by D.J. Williams</td>
<td>83 - 98</td>
</tr>
</tbody>
</table>
GEOTECHNICAL ENGINEERING

Journal of the
SOUTHEAST ASIAN GEOTECHNICAL SOCIETY
&
ASSOCIATION OF GEOTECHNICAL SOCIETIES IN SOUTHEAST ASIA

Sponsored by
ASIAN INSTITUTE OF TECHNOLOGY

Guest Editors:
Prof. Ikuo Towhata, Prof. Der Wen Chang & Dr. Ivan Gratchev

Christchurch (after Orense et al, 2012)

WenChuan (after Yang et al, 2012)

Tohoku (after Kazama et al, 2012)
Prof. Ikuo Towhata

Prof. Ikuo Towhata had his engineering education at the prestigious Tokyo University in Japan and is currently a Professor in the Department of Civil Engineering. Tokyo University is traditionally very strong in Soil Dynamics, Machine Foundations and Geotechnical Earthquake Engineering now for several decades. Also recently, Prof. Towhata has written a comprehensive and scholarly book in this discipline (see Geotechnical Earthquake Engineering, 2008: publisher Springer). Prof. Towhata was also the Editor in Chief of the well-known Journal, Soils and Foundations. He is an active member of several national and international committee on landslides, earthquake engineering. Recipients of several prestigious awards, Prof. Towhata’s interests in Geotechnics is very wide and are on deformation characteristics of sands, dynamic analysis of earth structures, soil improvement by densification and grouting, stability of slopes and seabeds under static and dynamic conditions, landslides and debris flows, seismic performance based design of geotechnical structures. Author of more than 250 publications, Prof. Towhata has lectured in many leading universities in most continents.

Prof. Der-Wen Chang

Prof. Der-Wen Chang teaches at The Department of Civil Engineering of Tamkang University (TKU), Taipei, Taiwan for over 19 years. He received Ph.D. in Civil Engineering at The University of Texas at Austin in 1991 and MS in Civil Engineering at Michigan State University in 1987. Prof. Chang has supervised there search work of over 60 Master Thesis and 3 Ph.D. Thesis at TKU, and published more than 160 articles as the Journal, Conf. papers and reports. Nearly all his research studies are related to numerical modeling and dynamic analyses for the geotechnical structures. His research experiences include NDT methods on pavements, seismic behaviors of the pile foundation, constitutive modeling of the soils, and recent study on the performance based design for the earth structures. Prof. Chang is also the visiting Professor at University of Washington at Seattle, US in 2008 and LN Gumilyov Eurasian National University at Astana, Kazakhstan for research studies in 2010. Other than there search works, Prof. Chang devotes himself a great deal to serve the communities. He involves heavily and indeed shows his good performance in the public works related to education and constructions. Prof. Chang is now serving as the Secretary General of Chinese Taipei Geotechnical Society, GC member of SEAGS, Editorial Panel for SEAGS/AGSSEA J. of Geotechnical Engineering, Committee members for Public Construction and Hazard Prevention in Taipei City and Taipei County governments. He will continue to work in the academia and hoping that his studies can better improve the civil engr. technologies.

Dr. Ivan Gratchev

Dr. Ivan Gratchev has spent the last ten years conducting research in the areas of geotechnical and geoenvironmental engineering in Japan, in particular earthquake-induced liquefaction and landslides. He qualified to receive a prestigious scholarship sponsored by the Japanese Government to complete his master and doctoral courses at Kyoto University. After receiving a PhD degree in 2007, he was selected for a highly competitive fellowship by the Japan Society for the Promotion of Science (JSPS) to conduct postdoctoral research at the University of Tokyo. His expertise in field investigation and laboratory testing led to his selection for several reconnaissance teams to assess structural damage and slope failures follow in recent earthquakes in Japan as well as the 2008 Sichuan Earthquake in China, and the 2009 earthquake in Sumatra. Since2010, Dr. Gratchev has been a lecturer at Griffith University, one of the fastest growing universities in Australia. He has produced more than 30 publications in refereed journals, international proceedings, as well as book chapters on research topics such as slope stability, liquefaction, and cyclic behavior of fine-grained soils as well as the effects of contamination on the geotechnical properties of soil.
I would like to express my deep respect to the geotechnical colleagues in Southeast Asia who have been publishing this prestigious journal for more than 40 years. It is very important that a regional engineering community maintains its own place of publication and is able to freely express its own idea of importance and value. I wish this journal to continue its contribution for a long time from now on.

When I was asked in 2011 to take care of a special issue on geotechnical earthquake engineering, I felt reluctant. This was because of my domestic situations after the gigantic earthquake on March 11, 2011, after which I have been working on such a variety of urgent issues as liquefaction vulnerability of subsoil, causative mechanisms of river levee damage, and post-earthquake public appeal among many others. Then fortunately two capable people started to jointly work with me for all the aspects of the publication of this issue. Upon this occasion, I would like to express my sincere appreciation to my Co-Guest Editors, Prof. Der Wen Chang and Dr. Ivan Gratchev without whom the editing and publication of this issue will not be impossible.

The mitigation of natural disaster is an important but difficult task. This is partially because we do not fully understand what happens during disasters. We can scarcely eyewitness the occurrence of a natural disaster. We can only visit sites of damage after the event and report the observation to colleague engineers. It is certainly possible that important and essential keys for mitigation are still overlooked or unknown. In this regard, the study of disaster mitigation is important and fascinating to capable and ambitious people.

In my personal opinion, earthquake problems deserve attention of capable people most significantly in mountain areas. In the mountain areas where many slope failures are triggered by earthquake shaking, not only the seismic shaking but also the ground condition is uncertain or not well known for design purposes. Accordingly, many unexpected things happen. This is the reason why many papers in this issue address earthquake-rainfall interaction, which is called the combined effects, as well as the long-term effect of past earthquakes. These new problems are not studied in details yet and the practice does not know how to deal with them. Conventional approach of geotechnical engineering such as limit equilibrium and factor of safety is too expensive because the action is combined and rare. Consequently, there is no practical approach yet and ambitious people are waited to start positive action to solve the problem. As the chief editor of this issue, I strongly expect such people to read this issue and be stimulated. I am confident that there are many challenges in this field of study that deserve deep devotion of good people. It is desired that this special issue would pave a road to solution of geotechnical earthquake problems that appear abundant in Southeast Asia and have not been well investigated.

Guest Editor
Ikuo Towhata
ACKNOWLEDGEMENT

The June 2012 Issue on Geotechnical Earthquake Engineering has Prof. Ikuo Towhata, Prof. Der Wen Chang and Dr. Ivan Gratchev as Guest Editors. Prof. Towhata has written a comprehensive and scholarly book in this discipline; see Geotechnical Earthquake Engineering, 2008: publisher Springer. We also had great guest editors for the 2011 Issues as: Jie Han; Tatsunori Matsumoto, Der Wen Chang; Chang Yu Ou and Dariusz Wanatowski. The March 2012 Issue had Prof. Charles W. W. Ng and Dr Apiniti Jotisankasa as Guest Editors.

We are most grateful to Prof. Ikuo Towhata, Prof Der Wen Chang and Dr. Ivan Gratchev for helping with the editorial works of the current issue. There are ten contributions as received from authors in Bangladesh, New Zealand, China, Iran, Japan and Chinese Taipei. The Authors are: Tahmeed M. Al-Hussaini, Tahsin R. Hossain and M. Hayeem Al-Noman; RP Orense, MJ Pender and LM Wotherspoon; Yingbin Zhang, Guangqi Chen, Jian Wu, Lu Zheng and Xiaoying Zhuang; Z. Yang, J. Qiao, H. Tian, D. Huang, M. Wang and H. Meng; Abbas Galandarzadeh and Alireza Ahmadi; Hirofumi Toyota M. Kazama, T. Noda, T. Mori and J. Kim; Meei-Ling Lin and Yu-Hung Shu; Ikuo Towhata; and Hongling Tian, Jianping Qiao, Taro Uchimura and Lin Wang.

The material contained in this issue relates to earthquakes in Canterbury (New Zealand), Tohoku, Chi-Chi in Taiwan and Northwest Chengdu, China. Geotechnical hazards including soil liquefaction and seismically induced slope failures are also the topics presented in this issue. Laboratory studies on soil liquefaction resistance and the role of tension-shear mechanism failure in numerical simulation of seismic slope stability are also presented. Changes to building codes incorporating geotechnical earthquake provisions are also described. These contributions will be of great interest to engineers and researchers who are dealing with challenges in geotechnical earthquake engineering.

The guest editors are thanked sincerely for their dedicated contributions. Prof. Der Wen Chang in co-ordination with Prof. Ikuo Towhata and Dr. Ivan Gartchev has worked in a meticulous manner in making this issue feasible and to be released in time. We now look forward to the September and December 2012 Issues as edited by Prof. Malek Bouazza and Tom Lunne and Prof. de Groot respectively.

K.Y. Yong
D.T. Bergado
T.A. Ooi
A.S. Balasubramaniam
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>List of Papers</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Changes to the Geotechnical Earthquake Engineering Provisions of the</td>
<td>01- 07</td>
</tr>
<tr>
<td>Bangladesh National Building Code</td>
<td></td>
</tr>
<tr>
<td>by Tahmeed M. Al-Hussaini, Tahsin R. Hossain and M. Hayeem Al-Noman</td>
<td></td>
</tr>
<tr>
<td>Analysis of Soil Liquefaction during the Recent Canterbury (New Zealand)</td>
<td>08- 17</td>
</tr>
<tr>
<td>Earthquakes</td>
<td></td>
</tr>
<tr>
<td>by RP Orense, MJ Pender and LM Wotherspoon</td>
<td></td>
</tr>
<tr>
<td>Numerical Simulation of Seismic Slope Stability Analysis</td>
<td>18- 28</td>
</tr>
<tr>
<td>based on Tension-Shear Failure Mechanism</td>
<td></td>
</tr>
<tr>
<td>by Yingbin Zhang, Guangqi Chen, Jian Wu, Lu Zheng, Xiaoqing Zhuang</td>
<td></td>
</tr>
<tr>
<td>A Real-time Prediction Method for Regional Rainfall-induced Geohazards in</td>
<td>29- 32</td>
</tr>
<tr>
<td>Post-earthquake Region of Wenchuan Earthquake</td>
<td></td>
</tr>
<tr>
<td>Effects of Anisotropic Consolidation and Stress Reversal on the Liquefaction</td>
<td>33- 39</td>
</tr>
<tr>
<td>Resistance of Sands and Silty Sands</td>
<td></td>
</tr>
<tr>
<td>by Abbas Galandarzadeh and Alireza Ahmadi</td>
<td></td>
</tr>
<tr>
<td>Characteristics of Slope Failures During Natural Disasters Considering</td>
<td>40- 48</td>
</tr>
<tr>
<td>Geographical Features and Groundwater Level: Case Study of the Chuetsu Region</td>
<td></td>
</tr>
<tr>
<td>of Niigata, Japan</td>
<td></td>
</tr>
<tr>
<td>by H. Toyota</td>
<td></td>
</tr>
<tr>
<td>Overview of the Geotechnical Damages and the Technical Problems Posed after</td>
<td>49- 56</td>
</tr>
<tr>
<td>the 2011 off the Pacific Coast of Tohoku Earthquake</td>
<td></td>
</tr>
<tr>
<td>by M. Kazama, T. Noda, T. Mori and J. Kim</td>
<td></td>
</tr>
<tr>
<td>Development of Potentail Map for Landslides Induced by the Chi-Chi Earthquake</td>
<td>57- 64</td>
</tr>
<tr>
<td>Using Instability Index</td>
<td></td>
</tr>
<tr>
<td>by Meei-Ling Lin and Yu-Hung Shu</td>
<td></td>
</tr>
<tr>
<td>Technical Notes:</td>
<td></td>
</tr>
<tr>
<td>Geotechnical Hazards with Emphasis on Seismically-Combined Effects on Slopes</td>
<td>65- 70</td>
</tr>
<tr>
<td>by Ikuo Towhata</td>
<td></td>
</tr>
<tr>
<td>Monitoring on Earthquake Induced Landslide - A Case Study in Northwest</td>
<td>71- 74</td>
</tr>
<tr>
<td>Chengdu, China</td>
<td></td>
</tr>
<tr>
<td>by Hongling Tian, Jianping Qiao., Taro Uchimura and Lin Wang</td>
<td></td>
</tr>
</tbody>
</table>
Scheme of a flexible-wall permeameter (After Naka et al, 2012)

Diffusion cell (After Touze-Foltzet al, 2012)

Typical lining system (After Dixon et al, 2012)
PROFESSOR ABDELMALEK BOUAZZA is very prominent in technical and professional society activities and serves on a number of international technical committees. Currently, he is a member of the International Geosynthetics Society (IGS) council and chair of the Asian Activities Committee of the International Geosynthetics Society. He is a core member of the International Society of Soil Mechanics and Geotechnical Engineering (ISSMGE) Technical Committee No5 (TC5) on Environmental Geotechnics, Vice-President of the Australasian Chapter of the International Geosynthetics Society (ACIGS), co-chair of the International Geosynthetics Society Education Committee and a member of the Standard Australia committee C20 on Geosynthetics. He is editorial board member of 5 International Journals and very active as a reviewer for several international journals.

Professor Abdelmalek Bouazza has published widely in international journals and refereed conferences and is the author or co-author of more than 180 refereed publications... His skills and experience in the area of waste containment facilities and geosynthetics are well recognized in Australia and abroad. He has been invited to deliver and contribute to several keynote lectures and state of the art reports in international conferences in Africa, Asia, Europe and North America, and delivers short courses on geosynthetics, and liners and cover systems for waste containment facilities on a regular basis locally and internationally. In addition to his academic commitments, Professor Abdelmalek Bouazza gives specialist advice for the industry both nationally and internationally.
Geosynthetics are extensively used in waste containment facilities either as part of cover or bottom lining systems. Their aim is to reduce water ingress into the containment, to control gas migration in the case of the cover liners, and to limit contaminant migration to levels that will result in negligible impact in the case of bottom liners. This special issue gives an overview of the research effort conducted in various part of the world on the theme of this special issue. It contains ten papers addressing important aspects related to waste containment design including the important interaction between waste or soil and lining systems, geomembrane wrinkles, hydrocarbon diffusion, geosynthetic clay liners and interaction with acid mine drainage and acidic solutions, settlement and its mitigation through the use of geosynthetics and finally concluding with an overview of the use of geosynthetics in landfills in Asia and in Perth, Australia.

Finally, I wish to express my appreciation to the authors for their effort and time in the preparation of a set of very high quality papers. I am very much indebted to the reviewers for their highly competent efforts. Last but not least, I would like to gratefully acknowledge the assistance and encouragement of Professor A. Balasubramaniam, Editor in Chief, during the preparation of this issue.

Abdelmalek Bouazza
Guest Editor
ACKNOWLEDGEMENT

The September 2012 Issue of the journal has Prof. Abdelmalek Bouazza from Monash University as the Guest Editor. We are greatly indebted to Malek to bring this flavour of Geosynthetics and Sanitary Landfill to our Journal through the contributions from invited authors.

There are ten excellent papers authored by: N. Dixon, K. Zamara, D.R.V. Jones and G. Fowmes; R. K. Rowe, P. Yang, M.J. Chappel, R.W.I. Brachman and W.A. Take; N. Touze-Foltz, M. Ahari, M. Mendes, C. Barral, M. Gardoni and L. Mazéas; P.J. Fox, C. Athanassopoulos, S. S. Thielmann and A. N. Stern; A. Naka, T. Katsumi, G. Flores, T. Inui, T. Ohta, T. Urakoshi and T. Ishihara; Y. Liu, W.P. Gates and A. Bouazza; S. Rajesh and B.V.S. Viswanadham; B.V.S. Viswanadham, S. Rajesh and A. Bouazza; H. B. Ng and B. Ramsey; and L. Du Preez, R. Beaman and I. Watkins. The topics covered waste/lining interaction systems; compacted clay liners in slopes; Diffusion of phenolic compounds through an HDPE geomembrane; Damages in Geomembranes due to Gravel in Underlying Compacted Clay; Mineral barriers against acid rock drainage; Geosynthetic Clay Liners Using Polymer Modified Geosynthetic Lining Systems for Modern Waste Facilities with Bentonite; Deformation Behaviour of Soil barriers of Landfill Covers; and Case studies in major metropolitan landfills These contributions will be of great interest to engineers and researchers who are dealing with Challenges in Geosynthetics and Sanitary Landfill Design Practice. Prof. Abdelmalek Bouazza must be congratulated for single-handedly doing all the editorial works in bringing forth this Issue of the journal on an important and useful theme.

Sincere thanks are due to all the contributing authors.

The March, June and September 2012 Issues are all released well in time and the credits go to the Guest Editors and the in-house editorial teams.

K.Y. Yong
D.T. Bergado
T.A.Ooi
A.S.Balasubramaniam
GEOTECHNICAL ENGINEERING

Special Issue on Geosynthetics and Sanitary Landfill
Guest Editor: Prof. Abdelmalek Bouazza

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>List of Papers</th>
<th>Page</th>
</tr>
</thead>
</table>
| Waste/Lining System Interaction: Implications for Landfill Design and Performance
 by N. Dixon, K. Zamara, D.R.V. Jones and G. Fowmes | 1-10 |
| Wrinkling of a Geomembrane on a Compacted Clay Liner on a Slope
 by R. K. Rowe, P. Yang, M.J. Chappel, R.W.I. Brachman, W.A. Take | 11-18 |
| Diffusion of phenolic compounds through an HDPE geomembrane
 by N. Touze-Foltz, M. Ahari, M. Mendes, C. Barral, M. Gardoni and L. Mazéas | 19-29 |
| Shear-Induced Geomembrane Damage due to Gravel in Underlying Compacted Clay
 by P. J. Fox, C. Athanassopoulos, S. S. Thiellmann, and A. N. Stern | 30-34 |
| Evaluation of mineral barriers against acid rock drainage
 by A. Naka, T. Katsumi, G. Flores, T. Inui, T. Ohta, T. Urakoshi, and T. Ishihara | 35-42 |
| Improvement on the Performance of Geosynthetic Clay Liners Using Polymer Modified Bentonite
 by Y. Liu, W. P. Gates and A. Bouazza | 43-45 |
| Effect of Settlement rate and Geogrid reinforcement on the Deformation Behaviour of Soil barriers of Landfill Covers: Centrifuge Study
 by S. Rajesh and B. V. S. Viswanadham | 46-54 |
| Effect of differential settlements on the sealing efficiency of GCLs compared to CCLs: Centrifuge Study
 by B. V. S. Viswanadham, S. Rajesh and A. Bouazza | 55-61 |
| Geosynthetic Lining System for Modern Waste Facilities – Experiences in Developing Asia
 by H. B. Ng and B. Ramsey | 62-67 |
| The Use of Geosynthetics in Major Metropolitan Landfills in Perth, WA – Two Case Studies
 by L. Du Preez, R. Beaman and I. Watkins | 68-70 |
Dilatometer Earth Pressure Cell
(after Lutenegger, 2012)

Hydraulic Conductivity Test
(After DeGroot et al., 2012; Dunaj et al., 2006)

CPT Testing in Peat (after Long & Boylan, 2012)
TOM LUNNE

Tom Lunne was educated at Heriot-Watt University in UK and at University of California Berkeley. He is currently Technical Advisor and Manager of Offshore Soil Investigations at the Norwegian Geotechnical Institute (NGI), Oslo, Norway. He has a diverse geotechnical engineering background resulting from both his consulting and research and development activities. Major activities have included: laboratory testing, in situ testing, sampling and evaluation of sample disturbance, field observations, evaluation of soil parameters; and planning, specifying and managing large offshore soil investigations. Tom has worked on numerous major projects worldwide. Tom has given invited lectures and presentations at conferences and conducted short courses worldwide. He is an active member of several technical committees including: Core Member of Committee TC-16 on In Situ Testing, International Society of Soil Mechanics and Geotechnical Engineering (1982 - present); Scandinavian Committee on Field Investigations, 1993 - 2004; Chairman of the Norwegian Committee on Field Investigations, 1993 - 2004; Member of the Committee of European Standard of CPT, (2001 - present). He is the author or co-author of more than 100 papers, publications and technical notes to professional journals and conferences and is the lead author of the book Cone Penetration Testing in Engineering Practice.

Prof DON J. DEGROOT

Prof Don J. DeGroot is a professor in the Department of Civil and Environmental Engineering at the University of Massachusetts Amherst, Amherst, MA, USA and a registered Professional Engineer in the USA. He received his D.Sc. in geotechnical engineering at the Massachusetts Institute of Technology in 1989. His teaching, research, and consultancy experience is primarily in the area of soil behaviour and environmental geotechnics with an emphasis on site characterization practice. He has been a Principal Investigator on numerous sponsored research projects including the recently completed $2.4 million US National Science Foundation project on “Developing International Protocols for Offshore Sediments and their Role in Geohazards: Characterization, Assessment, and Mitigation.” He has published refereed research findings in many of the major geotechnical engineering journals, ASCE Geotechnical Special Publications, ASTM Special Technical Publications and TRB publications. National and international conferences activities include several Keynote and State-of-the-Art papers, presentations, and short courses. He has served on the editorial boards of the Journal of Geotechnical and Geoenvironmental Engineering and the Geotechnical Testing Journal and served as Chair of the ASCE Geo-Institute Soil Properties and Modeling Committee. Teaching and research awards include the James L. Tighe Civil Engineering Distinguished Teaching Award, United Technologies Corporation Outstanding Laboratory Teaching Award, Research Council of Norway Guest Researcher Fellowship, University of Western Australia Gledden Visiting Senior Fellowship, and the CEE Research Excellence Award.
GEOTECHNICAL ENGINEERING

PREFACE

This special issue the journal is focused on in-situ testing of soils and covers recent developments in equipment and data interpretation, results from field programs conducted at research test sites, and case histories.

In-situ testing and soil sampling with subsequent laboratory testing are the key components of geotechnical site investigation practice. Because of the wide range of soils and soil behavioural response that can be encountered during a site investigation there is correspondingly a large variety of in-situ tools that have been developed and used in practice. Collectively, the eight papers in this special issue touch on aspects of many of the common devices including: standard penetration test, piezocone, seismic piezcone, field vane, seismic dilatometer, pressure-meter, full-flow penetrometers, and earth pressure cells. Topics include determination of key soil properties for design such as undrained shear strength, shear wave velocity, pre-consolidation stress, effective stress friction angle, lateral earth pressure, cyclic resistance, and hydraulic conductivity. Results presented in the papers cover the full spectrum of soils including low and high plasticity clays, sensitive clays, plastic and non-plastic silts, sands, gravels and peat. The data presented for the case histories and also that collected at the research test sites provide a valuable frame of reference for future investigations in similar soils.

The Guest Editors thank the authors for their contributions and all the reviewers for the time and dedication in reviewing the manuscripts. We also thank Prof A. S. Balasubramaniam and Dr T.A. Ooi for the opportunity to serve as Guest Editors and especially for their constant encouragement and assistance during the preparation of this issue and guiding its publication to fruition.
The December 2012 Issue of the journal have Tom Lunne from Norwegian Geotechnical Institute (NGI) and Prof. Don J De Groot from University of Massachusetts, Amherst, USA as Guest Editors. This Special Issue is devoted to In-situ testing of soils. NGI is in the forefront of in-situ testing and instrumentation from early 1950 with Arild Andressen, Gunar Aas and Dr. Elmo Dibiagio, with Tom Lunne and others.

There are eight excellent papers authored by: A. S. Bradshaw, A. C. Morales-Velez, and C.D.P. Baxter; A. Emdal, M. Long, A. Bihs, A. Gylland and N. Boylan; Alan J. Lutenegger; T. Ku and P.W. Mayne; M. Long and N. Boylan; K.H. Goh, K. Jeyatharan and D. Wen; D.J. De Groot, D.W. Ostendorf, and A.I. Judge; and F. A. B. Danziger and T. Lunne. The topics covered include: Evaluation of Existing CPT Correlations in Silt; Characterisation of Quick Clay at Dragvoll, Trondheim, Norway; Field Response of Push-In Earth Pressure Cells for Instrumentation and Site Characterization of Soils; Frequent-Interval SDMT and Continuous SCPTu for Detailed Shear Wave Velocity Profiling in Soils; In Situ Testing of Peat – a Review and Update on Recent Developments; Understanding the stiffness of soils in Singapore from pressuremeter testing; In situ measurement of hydraulic conductivity of saturated soils; and Rate effect on cone penetration test in sand.

Tom Lunne and Prof. Don J De Groot must be congratulated in having such excellent articles from well known authors in in-situ testing of soils. Sincere thanks are due to all the contributing authors.

All the four Issues in March, June, September and December for the year 2012 are released well in time and the credits must go to the Guest Editors, reviewers and the in-house editorial teams. We now look ahead for the Issues of 2013 for which the Guest Editors are in advanced stage with the preparation. Special Issues on important topics are covered in the 2011 and 2012 Issues and the articles would be of great value to practitioners as well as researchers.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>List of Papers</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation of existing CPT correlations in silt</td>
<td>1 - 10</td>
</tr>
<tr>
<td>by A. S. Bradshaw, A. C. Morales-Velez and C.D.P. Baxter</td>
<td></td>
</tr>
<tr>
<td>Characterisation of quick clay at Dragvoll, Trondheim, Norway</td>
<td>11 - 23</td>
</tr>
<tr>
<td>by A. Emdal, M. Long, A. Bihs, A. Gylland and N. Boylan</td>
<td></td>
</tr>
<tr>
<td>Field response of push-in earth pressure cells for instrumentation and site</td>
<td>24 - 33</td>
</tr>
<tr>
<td>characterization of soils</td>
<td></td>
</tr>
<tr>
<td>by Alan J. Lutenegger</td>
<td></td>
</tr>
<tr>
<td>Frequent-interval SDMT and continuous SCPTu for detailed shear wave velocity</td>
<td>34 - 40</td>
</tr>
<tr>
<td>profiling in soils</td>
<td></td>
</tr>
<tr>
<td>by T. Ku and P.W. Mayne</td>
<td></td>
</tr>
<tr>
<td>In situ testing of peat – a review and update on recent developments</td>
<td>41 - 55</td>
</tr>
<tr>
<td>by M. Long and N. Boylan</td>
<td></td>
</tr>
<tr>
<td>Understanding the stiffness of soils in Singapore from pressuremeter testing</td>
<td>56 - 62</td>
</tr>
<tr>
<td>by K.H. Goh, K. Jeyatharan and D. Wen</td>
<td></td>
</tr>
<tr>
<td>In situ measurement of hydraulic conductivity of saturated soils</td>
<td>63 - 71</td>
</tr>
<tr>
<td>by D.J. DeGroot, D.W. Ostendorf and A.I. Judge</td>
<td></td>
</tr>
<tr>
<td>Rate effect on cone penetration test in sand</td>
<td>72 - 81</td>
</tr>
<tr>
<td>by F. A. B. Danziger and T. Lunne</td>
<td></td>
</tr>
</tbody>
</table>
Pipe Jacking (after Le et al., 2013)

Rainfall and Stability of Slope (after Xu et al., 2013)
This issue has articles from researchers in Australia, Bangkok, Japan, Nottingham, UK, Singapore, Taiwan and many other countries. From Japan, Prof. Satoru Shibuya’s group also made contributions.

Prof. Der-Wen Chang is a faculty member at The Department of Civil Engineering of Tamkang University (TKU), Taipei, Taiwan for over 21 years. He received his Ph.D. in Civil Engineering at The University of Texas, Austin in 1991 and MS in Civil Engineering at Michigan State University in 1987. Prof. Chang has supervised the research work of over 60 Master Thesis and 3 Ph.D. Thesis at TKU, and published more than 160 articles in Journal, Conference proceedings and reports. Nearly all his research studies are related to numerical modelling and dynamic analyses for the geotechnical structures. His research experiences include NDT methods on pavements, seismic behaviours of the pile foundation, constitutive modelling of soils, and recent study on the performance based design for the earth structures. Prof. Chang is also the visiting Professor at University of Washington at Seattle, US in 2008 and LN Gumilyov Eurasian National University at Astana, Kazakhstan for research studies in 2010 and 2011. Other than the research works, Prof. Chang devotes himself a great deal to serve the communities. He involves heavily and indeed shows his good performance in the public service related to education and constructions. Other than the Secretary General at Chinese Taipei Geotechnical Society (2009~2011), Prof. Chang is the current GC member of SEAGS, Editorial Panel for SEAGS/AGSSEA J. of Geotechnical Engineering, Committee members for Public Construction and Hazard Prevention in Taipei City and New Taipei City governments. He is also a TC212 member at ISSMGE who puts a lot of research efforts on seismic behaviours and performance of the pile foundations.

Dr Dariusz Wanatowski is a Lecturer in Geomechanics in the Department of Civil Engineering at the University of Nottingham, United Kingdom. He graduated in Civil Engineering from Poznan University of Technology, Poland in 1999. Between 1999 and 2001 he worked as a teaching and research assistant at the same university where he was lecturing soil mechanics and foundation engineering courses. He was also involved in several research projects, including effects of various improvements of subgrade on its bearing capacity and experimental investigation of engineering properties of various organic soils. He obtained his PhD from Nanyang Technological University in 2006. Prior to joining the Nottingham Centre for Geomechanics in February 2006 Dr Wanatowski also worked as a researcher at NTU on effects of strength and stiffness anisotropy of geomaterials on the stability and deformation of tunnels. Dr Wanatowski’s general research interests are focused on experimental geomechanics, particularly strain softening and instability behaviour of granular soils, strain localization in sands, strength and stiffness anisotropy of geomaterials, and effects of intermediate principal stress on the strength and deformation characteristics of soils. He has consulting experience in the areas of laboratory and in situ testing of soils. He is also an Honorary Secretary for East Midlands Geotechnical Group in the UK.
The SEAGS and AGSSEA Journal of Geotechnical Engineering has been growing tremendously since the SEAGC in Taipei in 2010. Thanks to all our Guest Editors and also the Editorial Team with Dr. Ooi and IEM Team from Malaysia, and Prof. Bergado and Team from AIT and Prof. Charles NG from the HK Society in using the HKUST Web. In 2010~2012, many important and representative topics had been selected and successfully presented. Apart from a series of special issues on subjects in geotechnical engineering, a considerable amount of contributed papers with wider spectrum have been received.

As a consequence, the 1st issue in 2013 collects eleven excellent papers on the fundamentals of soil behaviours and the lessons learned from different construction technologies. There are papers discussing the deep excavation in clay by Mabrouk and Rowe, a historical overview on consolidation and strength for Taipei clay made by Hwang et al.. Lime stabilization and the acid effects on organic clay was brought by Mohd Yunus et al.. Settlements of the compacted soils and the compaction for mudstones were discussed by Leong et al. and Puttiwonggrak et al., respectively. On the other hand, small-strain behaviour of sand was presented by Lai et al. considering the effects of stress paths.

Additionally, four papers discussing the observations from on-site construction technologies and/or relevant numerical simulation can be found. They are: Joint effect on Pipe Jacking method by Le et al., FE modelling on Box-Jacking tunnel work induced ground behaviours by Komiya and Nakayama, Deformations of historic building due to tunnelling by Ge et al., and Monitoring technology on slope with rainfall infiltration by Xu et al.. Papagiannakis discusses an overview of the state of the art of mechanistic-empirical pavement design, as established by NCHRP Study 1-37A in the United States. It is our belief that all the papers presented in this issue are highly valuable and useful to the engineering work. The editors would like to express their sincere gratitude towards the authors and the reviewers who make this publication possible.

Editors
Der-Wen Chang
Dariusz Wanatowski
ACKNOWLEDGEMENT

We are fortunate to have all the material ready for the March 2013 Issue of the Journal. This Issue is on contributed papers as received from many authors worldwide. It is the intention of the editorial team to have a balanced between those papers which are directly contributed and those published under specific themes. We are most grateful, this issue in 2013 is made feasible with the contributions from Ahmed B. Mabrouk and R. Kerry Rowe (Canada); Richard N. Hwang, Za-Chieh Moh and I-Chou Hu (Taiwan); N.Z. Mohd Yunus, D. Wanatowski and L.R. Stace (UK); E.C. Leong, S. Widiastuti and H. Rahardjo (Singapore); A. Puttwongrak, H. Honda, T. Matsuoka and Y. Yamada (Japan); Yong Lai, Jian-yong Shi, Xiao-jun Yu and Qiu-rong Cao (China); L.G. Le, M. Takise, M. Sugimoto and K. Nakamura (Japan); K. Komiya and T. Nakayama (Japan); Shi-ping Ge, Dong-wu Xie, Wen-qi Ding, Ya-fei Qiao, Jin-chun Chai (China & Japan); and Dongsheng Xu, Fei Tong, Huahu Pei, and Jianhua Yin (China) and Papagiannakis of United States. The number of papers has also increased to eleven in this Issue.

The geotechnical Engineering Journal has lately been published spot on time since 2010 and this is due to the untiring efforts of our inhouse technical editors, particularly Prof. Der Wen Chang of the Taiwan Geotechnical Society and Dr. Dariusz Wanatowski of University of Nottingham in UK; the Editorial team of IEM under Dr. Ooi; the Ediitorial team of SEAGS at AIT under Prof. Beregado; and last but not least the help of Prof. Charles Ng of the Hong Kong Geotechnical Society and HKUST in using their web.

The June and September Issues of 2013 will be under the Leadership of Prof. Akira Murakami and Prof. Fusao Oka repectively. Their editorial teams will include Prof. Muhunthan, Dr. Hossam Abuel-Naga, Dr. Suched Likitlersuang, and Prof. Helmut F. Schweiger. Finally, the December Issue containing papers to honour Prof. Bergado is expected to have fourteen papers and edited by Prof. Chai Jin-Chun and Prof. Dr. Shui-Long Shen.

It is a great pleasure to note that we now have papers and commitments till mid 2015 Issue.

K.Y. Yong
D.T. Bergado
T.A.Ooi
A.S.Balasubramaniam
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Some factors affecting deep excavation in clay over gassy bedrock</td>
<td>1-8</td>
</tr>
<tr>
<td>By Ahmed B. Mabrouk and R. Kerry Rowe</td>
<td></td>
</tr>
<tr>
<td>Effects of Consolidation and Specimen Disturbance on Strengths of Taipei Clays</td>
<td>9-18</td>
</tr>
<tr>
<td>By Richard N. Hwang, Za-Chieh Moh and I-Chou Hu</td>
<td></td>
</tr>
<tr>
<td>Lime Stabilisation of Organic Clay and the Effects of Humic Acid Content</td>
<td>19-25</td>
</tr>
<tr>
<td>By N.Z. Mohd Yunus, D. Wanatowski and L.R. Stace</td>
<td></td>
</tr>
<tr>
<td>Estimating Wetting-induced Settlement of Compacted Soils using Oedometer Test</td>
<td>26-33</td>
</tr>
<tr>
<td>By E.C. Leong, S. Widiastuti and H. Rahardjo</td>
<td></td>
</tr>
<tr>
<td>Compaction Curve with Consideration of Time and Temperature Effects for Mudstones</td>
<td>34-39</td>
</tr>
<tr>
<td>By A. Puttiwongrak, H. Honda, T. Matsuoka and Y. Yamada</td>
<td></td>
</tr>
<tr>
<td>Small strain behavior of sand under various stress paths considering anisotropic initial stress state</td>
<td>40-46</td>
</tr>
<tr>
<td>By Lai Yong, Shi Jian-yong, Yu Xiao-jun and Cao Qiu-rong</td>
<td></td>
</tr>
<tr>
<td>Study of Joint Effect on Pipe in Pipe Jacking Method</td>
<td>47-56</td>
</tr>
<tr>
<td>By L. G. Le, M. Takise, M. Sugimoto and K. Nakamura</td>
<td></td>
</tr>
<tr>
<td>Finite Element Analysis of Ground Behaviour due to Box-jacking Tunnel Work</td>
<td>57-60</td>
</tr>
<tr>
<td>By K. Komiya and T. Nakayama</td>
<td></td>
</tr>
<tr>
<td>Tunneling Induced Deformation of a Historic Building in Shanghai</td>
<td>61-67</td>
</tr>
<tr>
<td>By Shi-ping Gea, Dong-wu Xied, Wen-qi Dinga, Ya-fei Qiao and Jin-chun Chai</td>
<td></td>
</tr>
<tr>
<td>In-situ monitoring of internal displacements by FBG sensors and slope stability analysis under rainfall infiltration</td>
<td>68-74</td>
</tr>
<tr>
<td>By Dongsheng Xu, Fei Tong, Huahu Pei, and Jianhua Yin</td>
<td></td>
</tr>
<tr>
<td>Mechanistic-Empirical Pavement Design; A Brief Overview</td>
<td>75-82</td>
</tr>
<tr>
<td>By A. T. Papagiannakis</td>
<td></td>
</tr>
</tbody>
</table>
Distribution of Saturation in numerical simulation
Bending Stress of model test (after Xiong, et al, 2013)

Large Model with gauge points for shear and volumetric
strain measurement (after Miyanaga, et al, 2013)

Schematic view of 3-D CT Imaging set-up (after Takano, et al, 2013)

Simulation in Cement Treated Soil
(after Kaneda, et al, 2013)
Prof. Akira Murakami received his BS (1978) at the Agricultural Engineering Department; MS (1980) at the Civil Engineering Department and Dr. Agr. (1991) from Kyoto University (KU), respectively. In 1982, he became an assistant professor at the Agricultural Engineering Department of KU, and was promoted to an associate professor of KU in 1994. He moved to the Graduate School of Environmental Science of Okayama University with a promotion to full professor in 1999. After joining Okayama University for just 10 years, he moved back to a full professor of KU in 2009. He has served as the Vice President of the Japanese Geotechnical Society (JGS), the Board Member of the Japanese Society of Irrigation, Drainage and Rural Engineering (JSIDRE), and the International Association for Computer Methods and Advances in Geomechanics (IACMAG), and also serves as a core member of TC103 of ISSMGE and a member of the Multidisciplinary International Society on Inverse Problems in Science and Engineering. He had acted as the Secretary of TC34 of ISSMGE for two terms and delivered a general report of ‘Numerical Methods’ at 16ICSMGE held in Osaka. He is the recipient of the Japanese Society of Civil Engineering (JSCE) Paper Award (1996), the JSIDRE Sawada Prize (2007), the JGS Best Accomplishment Award (2008), the JSIDRE Best Paper Award (2010), the JGS Paper Award (2011, 2013) and is a Fellow of JSCE. His research interests include the data assimilation, inverse problem, finite element methods, mesh free methods, and DEM in geomechanics.

Dr. Dariusz Wanatowski is an Associate Professor and Head of Department of Civil Engineering at the University of Nottingham Ningbo China (UNNC). He graduated in Civil Engineering from Poznan University of Technology, Poland in 1999. Between 1999 and 2001 he worked as a teaching and research assistant at the same university where he was lecturing soil mechanics and foundation engineering courses. He was also involved in several research projects, including effects of various improvements of subgrade on its bearing capacity and experimental investigation of engineering properties of various organic soils. He obtained his PhD from Nanyang Technological University in 2006. Prior to joining the Nottingham Centre for Geomechanics in February 2006 Dr. Wanatowski also worked as a researcher at NTU on effects of strength and stiffness anisotropy of geomaterials on the stability and deformation of tunnels. Dr. Wanatowski's general research interests are focused on experimental geomechanics, particularly strain softening and instability behaviour of granular soils, strain localization in sands, strength and stiffness anisotropy of geomaterials, and effects of intermediate principal stress on the strength and deformation characteristics of soils. He has consulting experience in the areas of laboratory and in situ testing of soils.
FOREWORD

It is a pleasure for me to be the Guest Editor for this Special Issue on Modelling Aspects of Soil Behaviour. There are seven excellent papers:

Soil-water-air coupled finite element analysis of model test on slope failure of unsaturated soil; Relation between seepage force and velocity of sand particles during sand boiling; A density-and stress-dependent elasto-plastic model for sands subjected to monotonic undrained torsional shear loading; 1-G Model Test with Digital Image Analysis for Seismic Behavior of Earth Dam; X-ray CT imaging of 3-D bearing capacity mechanism for vertically loaded shallow foundations; Modeling and Bending Test Simulations of Cement Treated Soil; and Modelling viscous effects during and after Construction in London Clay.

Appropriate modelling of the soil behaviour is now most important with all types of current analyses and design of the geotechnical aspects of Infrastructure and mining engineering projects. This Special Issue is the second of this type in this Journal since 2011 and the first one was in December 2011 as edited by the guest Editor Dr. Dariusz Wanatowski. The material contained in this issue will fit in very well with the next Issue in September 2013 on Geotechnical Analyses. Visco elasto-plastic modelling of soils has been the current trend in soil behaviour.

I must thank Dr. Hossam Abuel-Naga of the School of Mechanical, Aerospace, and Civil Engineering, The University of Manchester, in helping with the submission of the paper by S. D. Clarke and C. C. Hird. Also, the in-house editor of the Journal Dr. Dariusz Wanatowski for his meticulous and painful task of checking and making sure that the articles are indeed in the correct format as required in the production of the journal.

Akira Murakami

Guest Editor
Editorial Team, SEAGS/AGSSEA J. of Geotechnical Engineering
Professor of Kyoto University, Graduate School of Agriculture
Editor-in-Chief, Soils and Foundations
ACKNOWLEDGEMENT

It is indeed a very great pleasure to have Prof. Akira Murakami of the Kyoto University and Editor in Chief of Soils & Foundations as the Guest Editor for this Special Issue on the Modelling Aspects of Soil Behaviour. Dr. Dariusz Wanatowski, our in-house Editor has assisted Prof. Murakami and us in the production of this important Issue. Additionally Dr. Hossam Abuel-Naga has been helpful in getting contributions from the United Kingdom.

There are seven excellent papers related to slope failure in unsaturated soils; seepage force and velocity of sand particles during sand boiling; elasto-plastic model for sands subjected to monotonic undrained torsional shear loading; Digital Image Analysis for Seismic Behavior of Earth Dam; X-ray CT imaging of 3-D bearing capacity mechanism for vertically loaded shallow foundations; Modeling and Bending Test Simulations of Cement Treated Soil; and Modelling viscous effects during and after Construction in London Clay and they are of great value to engineering practice and research.

Also, the editorial works for the September and December Issues are now well advanced and the valuable assistance from our International Geotechnical Community is gratefully acknowledged.

K. Y. Yong
D. T. Bergado
T. A. Ooi
A. S. Balasubramaniam
GEOTECHNICAL ENGINEERING

June 2013: Modelling Aspects of Soil Behaviour

Editors: Akira Murakami
Dariusz Wanatowski

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>List of Papers</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil-water-air coupled finite element analysis of model test on slope failure in unsaturated soil</td>
<td>1 - 8</td>
</tr>
<tr>
<td>By Y.L. Xiong, X.H. Bao and F. Zhang</td>
<td></td>
</tr>
<tr>
<td>Relation between seepage force and velocity of sand particles during sand boiling</td>
<td>9 - 17</td>
</tr>
<tr>
<td>By K. Fujisawa, A. Murakami, S. Nishimura and T. Shuku</td>
<td></td>
</tr>
<tr>
<td>A density-and stress-dependent elasto-plastic model for sands subjected to monotonic undrained torsional shear loading</td>
<td>18 - 26</td>
</tr>
<tr>
<td>By G. Chiaro, J. Koseki and L.I. Nalin De Silva</td>
<td></td>
</tr>
<tr>
<td>1-G model test with digital image analysis for seismic behavior of earth dam</td>
<td>27 - 34</td>
</tr>
<tr>
<td>By Y. Miyanaga, A. Kobayashi and A. Murakami</td>
<td></td>
</tr>
<tr>
<td>X-ray CT imaging of 3-D bearing capacity mechanism for vertically loaded shallow foundations</td>
<td>35 - 41</td>
</tr>
<tr>
<td>By D. Takano, J. Otani, M. Nakamura, and R. Mokwa</td>
<td></td>
</tr>
<tr>
<td>Modeling and bending test simulations of cement treated soil</td>
<td>42 - 47</td>
</tr>
<tr>
<td>By K. Kaneda, T. Tanikawa and S. Onimaru</td>
<td></td>
</tr>
<tr>
<td>Modelling viscous effects during and after construction in London Clay</td>
<td>48 - 54</td>
</tr>
<tr>
<td>By S. D. Clarke and C. C. Hird</td>
<td></td>
</tr>
</tbody>
</table>
Modelling of Pile Raft Foundation
(after Tschuchnigg & Schweiger, 2013)

Numerical Simulation of Rainfall Infiltration on Unsaturated Soil Slope With Seepage Flow
(after S.Kimoto et al, 2013)
Prof. Fusao Oka

Prof. Oka is Professor emeritus of Kyoto University and JSPS scientific researcher of Kyoto University. He had been Professor of Civil and Earth Resources Engineering at Kyoto University in Japan. He has many years of experience in geomechanics with special emphasis on constitutive modeling of geomaterials, liquefaction analysis, strain localization problems and experimental works, numerical modeling of multi-phase materials such as chemothermo-hydro-mechanical modeling of Methane hydrate containing ground. His research expertise covers engineering applications such as soil liquefaction, consolidation and excavation problems with theoretical and experimental approach. Prof. Oka has particular interest in the viscoplastic modeling of geomaterials and related strain localization behavior. He gave a special lecture at the plenary session of 16th ICSMGE on computational geomechanics in 2005. He has published more than 200 papers in this field and has received many awards from the Japanese Geotechnical society (2005), Japan Society of Civil Engineers (1993), and IACMAG (1997, 2006). He has been serving as a chair of TC34 of ISSMGE on Prediction and Simulation Methods in Geomechanics and chaired the 4th International Workshop on Strain Localization and Bifurcation Theory for Soils and Rocks (1997), the ISSMGE International Symposium on Deformation and Progressive Failure in Geomechanics (1997), and the International Symposium on Prediction and Simulation Methods for Geohazard Mitigation by JGS and ISSMGE (2009), the 46th Japan National conference on geotechnical Engineering (2011). He is now chairing the organizing committee of the 14th ICIACMAG 2014 Kyoto. He is currently serving as EBM of the International Journal of Numerical and Analytical Methods in Geomechanics, Computers and Geotechnics and the International Journal of Geomechanics and Geoengineering.

Prof. Helmut F. Schweiger

(Graz University of Technology)

Prof. Helmut F. Schweiger is Head of the Computational Geotechnics Group at the Institute for Soil Mechanics and Foundation Engineering of the Graz University of Technology in Austria and has over 25 years of experience in developing and applying numerical methods in geomechanics. He obtained his Ph.D. from the University of Wales, Swansea, UK. His main research interests are the development of multilaminate models for soils, application of Random Set Theory to finite element analysis and the assessment of the influence of the constitutive model for solving practical problems, in particular deep excavations, deep foundations and tunnels. Application of numerical methods in accordance with the design approaches defined in Eurocode7 is another topic he is involved in. His group was a member of several research projects funded by the European Commission. His research is reflected in more than 130 publications in International Journals and Conference Proceedings and invitations to keynote and plenary lectures at International Conferences on Soil Mechanics and Computational Geotechnics. He serves on a number of editorial boards of international journals and was chairman of 6th European Conference on Numerical Methods in Engineering. As a member of several committees Helmut is involved in formulating guidelines and recommendations for the use of finite elements in practical geotechnical engineering. He lectures on courses on Computational Geotechnics around the world and has been a member of numerous Ph.D. committees. In 2005 he received the "Excellent Contributions Award Regional" of the International Association for Computer Methods and Advances in Geomechanics and the "Best Paper Award" of the Japanese Geotechnical Society and in 2010 the "George Stephenson Medal" of the Institution of Civil Engineers, London, UK for a paper published in Geotechnique.
GEOTECHNICAL ENGINEERING

FOREWORD

I am very pleased to be the Leader of the Team of Guest Editors on this Special Issue on the Role of Analyses in Geotechnical Engineering. The co-editors are Prof. Helmut and Prof. Muhunthan in seeking contributions. Dr. Dariusz Wanatowski also helped in Proof Reading the articles.

There are nine papers in this issue and they are: Numerical Simulation of the Rainfall Infiltration on Unsaturated Soil Slope Considering a Seepage Flow; Seismic Response of Gravity-Cantilever Retaining Wall Backfilled with Shredded Tire;

Numerical modeling of lateral response of long flexible piles in sand; New Sampling Algorithm in Particle Filter for Geotechnical Analysis; Comparison of deep foundation systems using 3D finite element analysis employing different modeling techniques; Application of a constitutive model for swelling rock to tunnelling; Finite element modelling of seismic liquefaction in soils; Random Wave-Induced Seabed Responses around Breakwater Heads; and Influence of brittle property of cement treated soil on undrained bearing capacity characteristics of the ground.

The authors of these papers are: S.Kimoto, F.Oka and E.Garcia; N. Ravichandran and E. L. Huggins; Md. Iftekharuzzaman and Bipul C Hawlader; T. Shuku, S. Nishimura, K. Fujisawa and A. Murakami ; F. Tschuchnigg & H.F. Schweiger; B. Schadlich, T. Marcher and H.F. Schweiger; V. Galavi, A. Petalas and R.B.J. Brinkgreve; Y Zhang, D-S Jeng, Z-W Fu and J Ou and S. Yamada, T. Noda, A. Asaoka and T. Shina.

Finally, I hope this Special Issue would be of great values to the Readers of Geotechnical Engineering Journal, whether they are in research or practice.

Fusao Oka
Guest Editor
Editorial Team, SEAGS/AGSSEA J. of Geotechnical Engineering
Professor Emeritus of Kyoto University
Kyoto, Japan
ACKNOWLEDGEMENT

It is a pleasure to thank Prof. Fusao Oka the Team leader of our Guest Editors for this September Issue on the Role of Analyses in Geotechnical Engineering Practice. The co-editors are Prof. Helmut Schweiger and Prof. Muhunthan Balasingham for acquiring papers from Europe & North America respectively. Dr. Dariusz Wanatowski helped the proof reading at the final stage.

There are nine excellent papers related: Numerical Simulation of the Rainfall Infiltration on Unsaturated Soil Slope Considering a Seepage Flow; Seismic Response of Gravity-Cantilever Retaining Wall Backfilled with Shredded Tire;

Numerical modeling of lateral response of long flexible piles in sand; New Sampling Algorithm in Particle Fileter for Geotechnical Analysis; Comparison of deep foundation systems using 3D finite element analysis employing different modeling techniques; Application of a constitutive model for swelling rock to tunnelling; Finite element modelling of seismic liquefaction in soils; Random Wave-Induced Seabed Responses around Breakwater Heads; and Influence of brittle property of cement treated soil on undrained bearing capacity characteristics of the ground.

Also, the editorial works for the December Issue is now well advanced and the valuable assistance from our International Geotechnical Community is gratefully acknowledged.

K. Y. Yong
N. Phienwej
T. A. Ooi
A. S. Balasubramaniam
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical Simulation of the Rainfall Infiltration on Unsaturated Soil Slope Considering a Seepage Flow</td>
<td>1 – 13</td>
</tr>
<tr>
<td>By S. Kimoto, F. Oka and E. Garcia</td>
<td></td>
</tr>
<tr>
<td>Seismic Response of Gravity-Cantilever Retaining Wall Backfilled with Shredded Tire</td>
<td>14 – 24</td>
</tr>
<tr>
<td>By N. Ravichandran and E. L. Huggins</td>
<td></td>
</tr>
<tr>
<td>Numerical modeling of lateral response of long flexible piles in sand</td>
<td>25 – 31</td>
</tr>
<tr>
<td>By Md. Iftekharuzzaman and Bipul C Hawlader</td>
<td></td>
</tr>
<tr>
<td>A New Sampling Algorithm in Particle Fileter for Geotechnical Analysis</td>
<td>32 – 39</td>
</tr>
<tr>
<td>By T. Shuku, S. Nishimura, K. Fujisawa and A. Murakami</td>
<td></td>
</tr>
<tr>
<td>Comparison of deep foundation systems using 3D finite element analysis employing different modeling techniques</td>
<td>40 – 46</td>
</tr>
<tr>
<td>By F. Tschuchnigg & H.F. Schweiger</td>
<td></td>
</tr>
<tr>
<td>Application of a constitutive model for swelling rock to tunnelling</td>
<td>47 – 54</td>
</tr>
<tr>
<td>By B. Schadlich, T. Marcher and H.F. Schweiger</td>
<td></td>
</tr>
<tr>
<td>Finite element modelling of seismic liquefaction in soils</td>
<td>55 – 64</td>
</tr>
<tr>
<td>By V. Galavi, A. Petalas and R.B.J. Brinkgreve</td>
<td></td>
</tr>
<tr>
<td>Random Wave-Induced Seabed Responses around Breakwater Heads</td>
<td>65 – 83</td>
</tr>
<tr>
<td>By Y Zhang, D-S Jeng, Z-W Fu and J Ou</td>
<td></td>
</tr>
<tr>
<td>Influence of brittle property of cement treated soil on undrained bearing capacity characteristics of the ground</td>
<td>84 – 93</td>
</tr>
<tr>
<td>By S. Yamada, T. Noda, A. Asaoka and T. Shina</td>
<td></td>
</tr>
</tbody>
</table>
1. Vacuum and Surcharge Loadings in Oedometer Test (after Chai et al, 2013)

2. Distribution of Soft Clay Deposits in Southeast Asia (after Long et al, 2013)

GEOTECHNICAL ENGINEERING

DECEMBER 2013 SPECIAL COMMEMORATIVE ISSUE IN HONOUR OF PROF DENNIS T. BERGADO ON HIS RETIREMENT FROM AIT

Editors: Jinchun Chai & Shui-Long Shen

PROF. JINCHUN CHAI

Prof. Chai got his bachelor of engineering degree from Tongji University in Shanghai, China in 1982; and master of engineering degree from the China Academy of Railway Science in Beijing, China in 1985. Then he got his Doctor of engineering degree from Asian Institute of Technology in Bangkok, Thailand in 1992 under the supervision of Prof. D. T. Bergado. Professor Chai is currently Professor of Geotechnical Engineering at the Department of Civil Engineering and Architecture, Graduate School of Science and Engineering, Saga University, Japan. His primary research interests are: (1) soft ground improvement; (2) geosynthetics; and (3) numerical analysis in geotechnical and geoenvironmental engineering.

He has written over 140 research papers (about 60 journal papers and over 80 conference papers) and two coauthored books, “Improvement techniques of soft ground in subsiding and lowland environment”, by :Bergado/Chai/Alfaro/Balasubramaniam;, Balkema (1994); and “Deformation analysis in soft ground improvement”, by Chai/Carter; Springer (2011). In Scopus database, his papers have been cited about 750 times, and his H-Index is 16. Professor Chai is a licensed Professional Engineer in Japan.

PROF. SHUI-LONG SHEN

Prof. Dr. Shui-Long Shen received his BSc. in Tunneling and Underground Space Technology from Tongji University in 1986 and his MPhil in Structural Engineering from the same university in 1989. He obtained his Ph.D. in Geotechnical Engineering from Saga University, Japan, in 1998. After Dr. Shen received his PhD, he worked in the Institute of Lowland Technology (ILT) as a lecturer from 1998 to 2001. During this period Dr. Shen served as an Associate Editor of Lowland Technology International-an International Journal. From 2001 to 2003, Dr. Shen worked in National Institute for Environmental Studies in Tsukuba-the Science City of Japan. In 2003, he joined the Department of Civil Engineering (DCE) of Shanghai Jiao Tong University (SJTU) as a faculty member. He is now the Department Head of DEC. From 2005 to 2010, Dr. Shen has been keeping collaboration with other international organization, e.g. Saga University, Virginia Tech, The University of Kansas, The University of Hong Kong, Suranaree University of Technology.

Dr. Shen’s research interests focus on soft ground improvement and land subsidence due to withdrawal of liquid from underground. He published and/or edited five books, of which two conference proceedings published by ASCE. Dr. Shen published more than 150 technical papers in Journals and conferences, in which about 50 papers were published in International Journals.

Dr. Shen also serves as an editorial board member of four International Journals, e.g. Geotextiles and Geomembranes, Elseveir, and Geotechnical Engineering – SEAGS etc. and two domestic journals, e.g. Chinese Journal of Geotechnical Engineering.
Preface

This special issue is dedicated to Professor Dennes T. Bergado to commemorate his retirement from the Asian Institute of Technology (AIT) in June, 2013. The general theme of this issue is: Soft Ground improvement and Geosynthetics, which has been the main area of Prof. Bergado’s personal research activity over the past 3 decades and to which he has contributed enormously. The idea of having a special issue for Prof. Bergado’s retirement came from Prof. A. S. Balasubramaniam in March 2012. When he asked us to be guest editors for this issue, we accepted the invitation happily and eagerly. Prof. Bergado was Prof. Jinchun Chai’s supervisor for his Doctor of Engineering Degree in AIT (1992), and he is also a close friend of Prof. Shuilong Shen.

We were determined to make the issue one of very high standards and a lasting and memorable contribution to the subject area. We started to invite active researchers in the field to contribute their new research results or state-of-the-art papers in April 2012. All those we invited responded warmly and enthusiastically, and we believe this was because of Prof. Bergado’s outstanding contribution to the field as well as his friendly personality. We informed all who agreed to contribute that all papers would be subject to strict critical review and only those papers that satisfactorily addressed all review comments would be finally included in this issue. Thirteen (13) full papers were received by the end of 2012. Review and revision works took about 4 months and in May 2013, the 13 high quality papers were finally accepted and ready for publication. Among these papers, 7 are review articles, i.e., state-of-the-art papers, and 6 contain essentially new and previously unpublished material.

In the meantime, we invited senior professors in the field of geotechnical engineering who know Prof. Bergado well to write their thoughts and reflections about him for this special issue. The notes penned by Prof. H.G. Poulos, Prof. S.K. Kim & Prof. N. Miura are included with this preface. It is hoped that these short notes will provide inspiration to young researchers and engineers working in the area of ground improvement and the application of geosynthetics.

Finally we would like to thank all the contributors and people who helped us to make this special issue a success. We wish Prof. Dennes T. Bergado a very happy retirement and at the same time urge him to continue to contribute professionally to the fields of soft ground improvement and the use of geosynthetics. We feel he still has much to offer to our profession.

Jinchun Chai, Saga, Japan
Shui-Long Shen, Shanghai, China
GEOTECHNICAL ENGINEERING

ACKNOWLEDGEMENT

It is a great pleasure to write this acknowledgement for the December 2013 Issue dedicated to honour Prof. Dennes T. Bergado’s retirement from the Asian Institute of Technology. At the very first sincere thanks must go to the guest editors Prof. Jinchun Chai and Prof. Shuilong Shen. They really did a magnificent job in making this volume possible with thirteen excellent papers; all related to ground improvement and from world-wide reputed authors.

There are fourteen excellent papers in this issue on: Behaviour of Clay Subjecting to Vacuum and Surcharge Loading in an Oedometer; Behaviour of Geogrid Reinforced Abutments on Soft Soil; Geocell-Reinforced Granular Fill under Static and Cyclic Loading: A Synthesis of Analysis; Electrical Vertical Drains in Geotechnical Engineering Applications; Design and Performance of Soft Ground Improvement Using PVD with and without Vacuum Consolidation; Reassessment of Long-Term Performance of Geogrids by Considering Mutual Interaction among Reduction Factors; Simulations of PVD Improved Reconstituted Specimens with Surcharge, Vacuum and Heat Preloading using Axisymmetric and Equivalent Vertical Flow Conditions; Reinforced Embankments on Soft Deposits: Behaviour, Analysis and Design; Current State of the Art in Vacuum Preloading for Stabilising Soft Soil; Jet Grouting Practice: an Overview; Deep Mixing Method in Japan; Recent Studies of Geosynthetic Tubes and Mattress: an overview; Design Method for Bearing Reinforcement Earth Wall; and Current State of Knowledge on Thermal Consolidation using Prefabricated Vertical Drains.

Prof. Bergado (Dennes) was in the Geotechnical Engineering batch that graduated from AIT in 1976. At that time, Dr. Moh, Dr. Brand, Dr. Peter Brenner and Prof. Priinya Nutralaya and Prof. A.S.Balasubramaniam were the Geotechnical Faculty Members at AIT. After working for a while in Philippines, Prof. Bergado studied at Utah State University in USA on a Full Bright Scholarship and worked with Prof. Loren Anderson. Prof. Bergado joined AIT as an Assistant Professor in 1982; early colleagues of Prof. Bergado at AIT include Prof. Hideki Ohta, Prof. Towhata, Late Dr. Tomiolo, Dr. Friedrich Prinzl, Prof. Ikuo Towhata, Prof. Yuhdbir and Dr. Sarvesh Chandra. Later, Dr Robert Whitely, Dr. Noppadol Phienwej, Dr. Rantucci, Prof. Buddhima Indraratna, Dr. Kuwano, Dr. Sugimoto, Dr. Honjo, Prof. Ohtsu, Prof. Shibuya and Dr. Takemura; just to name a few. Prof. Onodera and Prof. Toshinobu Akagi left AIT a little before Prof. Bergado joined AIT.

At AIT in the early years Prof. Bergado was involved with many major Sponsored Research Projects including the USAID Funded Welded Wire Mechanical Stabilized Earth and Geosynthetics in Embankments on Soft Clays. Prof. Bergado was also deeply involved with the PVD Soft Ground Improvement Project at the Second Bangkok (Suvarnabhumi) Airport Site with the Airport Authority of Thailand. The Doctoral Students of Prof. Bergado were: Prof. Shivashankar, Prof. Chai, Dr. Long, Dr Panich, Dr Lorenzo, Dr Sompote, Dr Lai, Dr Abuel-Naga, Dr Chairat, Dr. Pittaya, Dr Jaturonk, and Dr
Tawatchai to name a few. He successfully supervised a total of 17 doctor and 160 master graduates. Prof. Bergado wrote 2 books in soil/ground improvement, edited 22 conference proceedings with more than 140 journal and 280 conference papers. Prof. Bergado also edited the Volume on Geotechnical Engineering in SE Asia for the Golden Jubilee Conference at San Francisco in 1985. Prof. Bergado was associated with the Southeast Asian Geotechnical Society from the time he joined AIT, earlier as Editor of the Journal (1996-2000) and later became the Secretary General of SEAGS (2001-2012). He also initiated the Asian Center for Soil Improvement and Geosynthetics (ACSIG) and founded the International Geosynthetics Society (IGS)-Thailand Chapter. Currently, he is serving his second term as elected member of the IGS International Council.

Prof. Bergado spent his Sabbatical at Saga University. Emeritus Professor Norihiko Miura has also contributed an article here on Prof. Bergado’s contributions and so were Prof. H G Poulos and Prof. Sag-Kyu Kim. These articles are included in the Preface as written by the Guest Editors.

It is a genuine pleasure to have this special issue to honour Prof. Dennes T. Bergado who has been an AIT Alumnus, a Colleague and friend of all of us over the last 35 years or so.

K. Y. Yong
N. Phienwej
T. A. Ooi
A. S. Balasubramaniam
GEOTECHNICAL ENGINEERING

December 2013: Commemorative Issue on Prof. D. T. Bergado’s Retirement from AIT
Editors: Prof. Jinchun Chai & Prof. Shui-Long Shen

TABLE OF CONTENTS

List of Papers

Part I General papers

Behaviour of Clay Subjecting to Vacuum and Surcharge Loading in an Oedometer
By J.-C. Chai, J. P. Carter, A. Saito and T. Hino---1

Behaviour of Geogrid Reinforced Abutments on Soft Soil
By Ennio M. Palmeira, André R.S. Fahel and Gregório. L. S. Araújo-----------------------------9

Geocell-Reinforced Granular Fill under Static and Cyclic Loading: A Synthesis of Analysis
By X. Yang and J. Han--17

Electrical Vertical Drains in Geotechnical Engineering Applications
By J. K. Lee and J.Q. Shang---24

Design and Performance of Soft Ground Improvement Using PVD with and without Vacuum Consolidation
By P.V. Long, D.T. Bergado, L.V. Nguyen and A.S. Balasubramaniam-----------------------------36

Reassessment of Long-Term Performance of Geogrids by Considering Mutual Interaction among Reduction Factors
By Han-Yong Jeon and Yuan Chun Jin---52

Part II State-of-the-art (review type) papers

Simulations of PVD Improved Reconstituted Specimens with Surcharge, Vacuum and Heat Preloading using Axisymmetric and Equivalent Vertical Flow Conditions
By P. Voottipruex and D.T. Bergado, and W. Wongprasan---61
Reinforced Embankments on Soft Deposits: Behaviour, Analysis and Design
By C. Taechakumthorn and R.K. Rowe---69

Current State of the Art in Vacuum Preloading for Stabilising Soft Soil
By C. Rujikiatkamjorn and B. Indraratna--77

Jet Grouting Practice: an Overview
By Z.F. Wang, S.L. Shen, C.E. Ho and Y.H. Kim---88

Deep Mixing Method in Japan
By Masaki Kitazume---97

Recent Studies of Geosynthetic Tubes and Matterres: an overview
By Wei Guo, Jian Chu and Shuwang Yan---115

Design Method for Bearing Reinforcement Earth Wall
By S. Horpibulsuk, C. Suksiripattanapong and A. Chinkulkijniwat -----------------------------------125

Current State of Knowledge on Thermal Consolidation using Prefabricated Vertical Drains
By H. M. Abuel-Naga, G. A. Lorenzo and D. T. Bergado---132

2. Track Displacement Monitoring (Indraratna et al, 2014)

Prof. Buddhima Indraratna

Prof. Buddhima Indraratna is currently Professor of Civil Engineering at the Faculty of Engineering, University of Wollongong. Concurrently, Buddhima is also the Research Director, Centre for Geomechanics and Railway Engineering; Program Leader, ARC Centre of Excellence in Geotechnical Science and Engineering; and Node Coordinator, CRC for Rail Innovation.

Since his PhD from the University of Alberta in 1987, his significant contributions to geotechnical and railway research have been acknowledged through numerous national and international awards, including the 2009 EH Davis Memorial lecture, regarded as one of the highest accolades within the Australian Geomechanics Society. Honoured as a Fellow of the Australian Academy of Technological Sciences and Engineering (FTSE) and as a recipient of the 2011 Engineers Australia Transport Medal and 2009 Business Higher Education Round Table (BHERT) award by Australian Commonwealth for Rail Track Innovations, his contributions to Transportation Geotechnics and Ground Improvement have been further acclaimed. He has published over 500 peer-reviewed articles (200+ Journal papers) and 5 research-based Books, and successfully supervised over 40 PhD graduates. His research income is approx. $1.2 M/year. He is the Founding Director of the Centre for Geomechanics and Railway Engineering (GRE). In this Centre, he is mentoring over a dozen full-time staff and overseeing the progress of over 30 PhD students. GRE is one of the three research centres forming the ARC Centre of Excellence in Geotechnical Sciences and Engineering (ARC-CGSE) funded recently (with Newcastle and UWA), of which he is a Program Leader. He is also the node coordinator of the CRC for Rail Innovation at UOW in charge of several rail track innovation projects including a real track design at Singleton, near Newcastle, NSW. The National Rail Testing Facility will be soon established at the University of Wollongong under his leadership through funding by the Australian Research Council.

Dr. Cholachat Rujikiatkamjorn

Dr Cholachat is an Associate Professor at the Centre for Geomechanics and Railway engineering, School of Civil, Mining and Environmental Engineering, University of Wollongong. He received his B Eng (1st Class Honours) from the Khonkaen University, Thailand in 2000 with a Masters (M Eng) from the Asian Institute of Technology, Thailand in 2002. He obtained his PhD in Geotechnical Engineering from the University of Wollongong in 2006. He received the Australian Geomechanics Society Thesis Award in 2006. In 2009, he received an award twice from the International Association for Computer Methods and Advances in Geomechanics (IACMAG) for an outstanding paper by an early career researcher, and the 2006 Wollongong Trailblazer Award for innovations in soft soil stabilisation for transport infrastructure. Recently he received the 2012 DH Trollope award and the 2013 ISSMGE Young Member award for academic achievements and outstanding contributions to the field of geotechnical engineering. He recently secured an early Career Researcher Award through the ARC Centre of Excellence in Geotechnical Science and Engineering with a grant of $680k for 3 years. His key areas of expertise include ground improvement for transport infrastructure and soft soil engineering. He has published over 140 articles in international journals and conferences. While maintaining a strong focus on quality teaching, to date, he has secured over $2 Million in research funding, mostly from external sources. He is currently a CI of two ARC-DP projects, 3 ARC-LP projects and a CRC-Rail project. He is currently the supervisor/co-supervisor of 10 HDR students and 4 Research Associates.
This Special Issue of the Geotechnical Engineering Journal of the Southeast Asian Geotechnical Society & Association of Geotechnical Societies in Southeast Asia on the Geotechnics for Advancing Transport Infrastructure is the result of keen discussion among various experts, for highlighting the key geotechnical issues encompassing modern transport infrastructure. This special issue includes a dozen invited papers from around the globe, including numerical and analytical methods, design parameters, field and laboratory testing, and case studies.

The issue begins with an invited paper by Tatsuoka et al titled “Geosynthetic-Reinforced Soil Structures for Railways: Twenty Five Year Experiences in Japan.” It draws our attention to the importance of the application of Geosynthetic-reinforced soil retaining walls constructed for high-speed train lines considering for both high seismic loads and subsequent over-topping tsunami current.

The article on the “Enhancement of Rail Track Performance through Utilisation of Geosynthetic Inclusions” by Indraratna et al. proposes the use of artificial inclusions such as polymeric geosynthetics and rubber shock mats with the aim of reducing particle breakage as a cost-effective option. The relative performance of different types of geogrids, geocomposites and shock mats installed in fully instrumented field tracks has been evaluated in the towns of Bulli and Singleton in the State of New South Wales, Australia.

In their study on “Railway Track Transition Dynamics and Reinforcement Using Polyurethane GeoComposites,” Woodward et al. investigate the application of a polyurethane reinforcement technique to control the ballast migration behaviour in the transition zone to reduce dynamic effects from problems like hanging sleepers. The paper demonstrates the effectiveness of the application through numerical simulation and a case study at Tottenham Hale Junction in the United Kingdom.

In the paper “How to Overcome Geotechnical Challenges in Implementing High Speed Rail Systems in Australia,” Khabbaz and Fatahi summarise lessons learnt from other countries experienced with high speed rail. The challenges and the effective solutions associated with implementing HSR systems in Australia are explained including selection and design of proper tracks, geographical issues, environmental concerns, economics and project costs and construction procedures.

In their contributions “Maintenance Model for Railway Substructure,” by Ebrahimi et al. propose a maintenance model for railway substructure to predict the deformation of railway track and to estimate a schedule for ballast maintenance and tamping. A mechanistic-based maintenance planning software program was developed by incorporating the mechanistic empirical deformation model for railway substructure.

In their study “Dynamic Behaviour of Railway Ballasted Track Structures in Shaking Table Tests and Seismic Resistant Performance Evaluation in Japan,” Ishikawa et al. present an experimental and analytical study to explain the dynamic response of ballasted track structures subjected to horizontal seismic motions using small-scale model ballasted tracks with shaking table tests. They show that this technique could roughly assess the seismic performance of ballasted track structures for practical use.

The article “Mechanical Properties of Polyurethane-Stabilized Ballast,” by Keene et al. presents the mechanical properties of Polyurethane-Stabilized Ballast (PSB) compared to other materials commonly used in transportation infrastructure. It is found that PSB has mechanical properties similar to cement-stabilized soil (i.e., displays flexural strength), but has much greater compressive strength than ballast, which is critical for stabilization of track substructure.
“Dependency of Cyclic plastic Deformation Characteristics of Unsaturated Recycled Base Course Material on Principal Stress Axis Rotation” is an experimental study by Inam et al. who present the strength-deformation characteristics of unsaturated recycled crusher-run material, under various loading conditions and saturation degrees using multi-ring shear apparatus. The results from the multi-ring shear tests during repeated axial and shear loading tests can produce the real permanent deformation behaviour inside the base course and such results can be incorporated in practical pavement design.

The paper “Quickness Test Approach for Assessment of Flow Slide Potentials” by Thakur and Degago introduces a novel and pragmatic test procedure referred to as the quickness tests to evaluate remoulded shear strength of the sensitive clays. Based on relevant Norwegian landslides data, a quickness based criteria is proposed to assess the potential for occurrence of flow slides.

“Cement Stabilization for Pavement Material in Thailand” presented by Horpibulsuk et al. is a detailed review on the application of lightweight cemented clay and recycled pavement material, which are commonly used in Thailand. The effects of water content, cement content, air content and curing time play a major role in controlling the field strength development.

The study on “Stone Columns Field Test: Monitoring Data and Numerical Analyses” Almeida et al. presents a case study of a field test performed on a set of sixteen stone columns loaded with iron rails for one month. The numerical calculations of vertical and horizontal displacements reproduced the field measurements with satisfactory accuracy up to limit state conditions. The yield of stone columns provided by 3D analysis appears to be more realistic than that provided by 2D analysis.

“Numerical Analysis of Response of Geocell Confined Flexible Pavement,” by S. Babu and R. Babu investigates the behaviour of geocell reinforcement in the flexible pavement. The paper elaborates on the effects of secant modulus of geocell material, aspect ratio, thickness of geocell-reinforced layer, and type of subgrade material using a series of numerical analyses.

Our invitation to be Guest Editors of this Special Issue is gratefully appreciated. The 11 articles plus the technical note included in this Special Issue covers an array of issues from theory to practice in transport infrastructure development. We gratefully acknowledge the efforts of all Authors who accepted our invitation to submit high quality articles in a timely manner. All papers have been peer-reviewed according to journal guidelines to maintain high standards, and we acknowledge these efforts by all Reviewers.

It is hoped that this Special Issue on Transport Geotechnics would be of immense benefit to both researchers and practitioners alike.

prof Buddha Indraratna,
A/Prof Cholachat Rujikiatkamjorn
ACKNOWLEDGEMENT

We are very fortunate to begin Year 2014 with this excellent Issue on Geotechnics for Advancing Transport Infrastructure. Also no one else can be better Guest Editors than Prof. Buddhima Indraratna and A/Prof Cholachat Rujikiatkamjorn. Prof. Buddhima Indraratna is currently Professor of Civil Engineering at the Faculty of Engineering, University of Wollongong. Concurrently, Buddhima is also the Research Director, Centre for Geomechanics and Railway Engineering; Program Leader, ARC Centre of Excellence in Geotechnical Science and Engineering; and Node Coordinator, CRC for Rail Innovation. Dr Cholachat is an Associate Professor at the Centre for Geomechanics and Railway engineering, School of Civil, Mining and Environmental Engineering, University of Wollongong. In the Preface, the Guest Editors proudly say, “This special issue includes a dozen invited papers from around the globe, including numerical and analytical methods, design parameters, field and laboratory testing, and case studies”. Indeed it is truly remarkable to have such an excellent set of papers, so eloquently presented in a systematic manner by the authors in an authoritative manner.

Appropriately the Issue begins with a novel contribution by Prof. Tatsuoka and co-authors on twenty five years of experiences in Japan on Geosynthetic reinforced soil structures for railways. The subsequent papers by Prof. Indraratna and Dr. Rujikiatkamjorn on enhancement of rail track performance through utilisation of geosynthetic inclusions; Railway Track Transition Dynamics & Reinforcement Using Polyurethane GeoComposites by P. Woodward, O. Laghrouche and A. El-Kacimi; How to Overcome Geotechnical Challenges in Implementing High Speed Rail Systems in Australia by H. Khabbaz and B. Fatahi; Maintenance Model for Railway Substructure by Ali Ebrahimi, James M. Tinjum, and Tuncer B. Edil; Dynamic Behaviour of Railway Ballasted Track Structures in Shaking Table Tests and Seismic Resistant Performance Evaluation in Japan by T. Ishikawa, S. Miura and E. Sekine; and Mechanical Properties of Polyurethane-Stabilized Ballast and Infrastructure Materials by A. Keene, J.M. Tinjum, and T.B. Edil; all of them are invaluable contributions related to railways and use of geosynthetics.

The following four papers and a Technical note as described makes this Special Issue a special volume by itself on Geotechnics for Advancing Transport Infrastructure;

Grateful thanks are due to all the contributing authors for their dedicated contributions. A very high standard is maintained in the contributions in this Issue and the subsequent three Issues are also expected to be of great value. They will form a very useful contribution to our profession.

K. Y. Yong
N. Phienwej
T. A. Ooi
A. S. Balasubramaniam
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>List of Papers</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geosynthetic-Reinforced Soil Structures for Railways: Twenty Five Year Experiences in Japan</td>
<td>01</td>
</tr>
<tr>
<td>by F. Tatsuoka, M. Tateyama, J. Koseki and T. Yonezawa</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Enhancement of Rail Track Performance through Utilisation of Geosynthetic Inclusions</td>
<td>17</td>
</tr>
<tr>
<td>by Buddhima Indraratna, Sanjay Nimbalkar, and Cholachat Rujikiatkamjorn</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Railway Track Transition Dynamics and Reinforcement Using Polyurethane GeoComposites</td>
<td>28</td>
</tr>
<tr>
<td>by P. Woodward, O. Laghrouche and A. El-Kacimi</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>How to Overcome Geotechnical Challenges in Implementing High Speed Rail Systems in Australia</td>
<td>39</td>
</tr>
<tr>
<td>by H. Khabbaz and B. Fatahi</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance Model for Railway Substructure</td>
<td>48</td>
</tr>
<tr>
<td>by Ali Ebrahimi, James M. Tinjum, and Tuncer B. Edil</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Behaviour of Railway Ballasted Track Structures in Shaking Table Tests and Seismic Resistant Performance Evaluation in Japan</td>
<td>56</td>
</tr>
<tr>
<td>by T. Ishikawa, S. Miura and E. Sekine</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Properties of Polyurethane-Stabilized Ballast</td>
<td>67</td>
</tr>
<tr>
<td>by A. Keene, J.M. Tinjum, and T.B. Edil</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Dependency of Cyclic Plastic Deformation Characteristics of Unsaturated Recycled Base Course Material on Principal Stress Axis Rotat</td>
<td>74</td>
</tr>
<tr>
<td>by A. Inam, T. Ishikawa, and S. Miura</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Quickness Test Approach for Assessment of Flow Slide Potentials</td>
<td>85</td>
</tr>
<tr>
<td>by V. Thakur and S. A. Degago</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Cement Stabilization for Pavement Material in Thailand</td>
<td>95</td>
</tr>
<tr>
<td>by S. Horpibulsuk, A. Chinkulkijiniwat, A. Suddeepong, and A. Neramitkornburee</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Stone Columns Field Test: Monitoring Data and Numerical Analyses</td>
<td>103</td>
</tr>
<tr>
<td>by Marcio Almeida, Bruno Lima, Mario Riccio, Holger Jud, Maria Cascão, Felipe Roza</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical Note:</td>
<td></td>
</tr>
<tr>
<td>Numerical Analysis of Response of Geocell Confined Flexible Pavement</td>
<td>113</td>
</tr>
<tr>
<td>by G. L Sivakumar Babu and Ram Babu</td>
<td></td>
</tr>
</tbody>
</table>
Numerical study on pile groups subjected to lateral soil movements (After O. Reul et al, 2014)

Piled Raft Foundation subjected to Strong Seismic Motion (After K. Yamashita et al, 2014)
Prof. Tatsunori Matsumoto

Prof. Matsumoto is now with Kanazawa University in Japan for nearly 34 years. He was educated at the Kanazawa University and received his Doctoral Degree from Kyoto University for his work on steel pipe piles in 1989. He has extensive research and practical experience on piled foundations and piled raft foundations. Prof. Matsumoto has a Shake Table Facility for the study of dynamic and earthquake type of behaviour of piled foundations. He has also worked on the centrifuge with pile groups and piled raft foundations in collaboration with Taisei Corporation. Prof. Matsumoto also has wide experience in the seismic design of raft and piled raft foundations. Prof. Matsumoto is one of the authors of the computer software PRAB—Piled Raft Analysis with Batter Piles. With this software piled raft foundation can be analyzed with vertical and horizontal loads as well as moment.

Univ.-Prof. Dr.-Ing. Jürgen Grabe

Prof. Grabe was educated in civil engineering at Hannover University/Germany and received his Doctoral Degree from Karlsruhe University/Germany for his work “Experimental and theoretical investigation of entire area compaction control using vibratory rollers” in 1992. Afterwards he worked in geotechnical consulting and construction companies for six years. In 1998 he became head of the Institute of Geotechnical Engineering and Construction Management at Hamburg University of Technology in Germany. He has extensive research and practical experience in physical, theoretical and numerical modelling in geotechnical engineering, especially in pile foundations, and marine geotechnics. Prof. Grabe has a complete soil mechanics laboratory and worked also on physical modelling in centrifuge in collaboration with University of Western Australia.

Prof. Grabe’s main research topics are geotechnical engineering in general, and marine geotechnics in particular. His methodical background covers physical modelling (1g model tests and ng model tests in collaboration with UWA), theoretical modelling (single and multiphase models for saturated and unsaturated soils based on continuum approach), numerical modelling (grid and mesh-based methods like FDM, FVM and FEM for continuum approach; meshfree methods like SPH for continuum approach, and DEM for discontinuum approach). Prof. Grabe and his research group produced 257 publications in national and international journals and conferences since 1998. From 2011 Prof. Grabe is vice president of Hamburg University of Technology, and is responsible for research in this function.
Prof. Der-Wen Chang

Prof. Chang has been the Geotechnical faculty member at The Department of Civil Engineering of Tamkang University (TKU), Taipei, Taiwan for over 22 years. He received Ph.D. in Civil Engineering at The University of Texas at Austin in 1991 and MS in Civil Engineering at Michigan State University in 1987. Prof. Chang has supervised the research work of over 60 Master Thesis and 3 Ph.D. Thesis at TKU, and published more than 190 articles as the Journal, Conf. papers and reports. Nearly all his research studies are related to numerical modeling and dynamic analyses for the geotechnical structures. His research experiences include NDT methods on pavements, seismic behaviors of the pile foundation, constitutive modeling of the soils, and recent study on the performance based design for the earth structures. Prof. Chang is also the visiting Professor at University of Washington at Seattle, US in 2008 and LN Gumilyov Eurasian National University at Astana, Kazakhstan for research studies in 2010 and 2011. Other than the research works, Prof. Chang devotes himself a great deal to serve the communities. He involves heavily and indeed shows his good performance in the public works related to education and constructions. Prof. Chang is currently serving as the Int. Secretary General of Chinese Taipei Geotechnical Society, GC member at SEAGS and Editorial Panel for SEAGS/AGSSEA J. of Geotechnical Engineering, and TC212 member at ISSMGE.
The theme of the 2014 June issue is Deep Foundations. Prof. Tatsunori Matsumoto at Kanazawa University, Japan and Prof. Jurgen Grabe at Hamburg University of Technology, Germany are the guest editors while Prof. Der-Wen Chang at Tamkang University, Taiwan is the in-house editor. Prof. Der-Wen Chang also undertook all the administrative works related to the review of the articles and coordinating with the Guest Editors, Authors and Reviewers. After 18-month of preparations, thirteen papers were finally selected and are published in this Issue.

The content of this issue covers up mainly the task force studies 1–5 of ISSMGE TC212. More than half of the technical papers are based on observations of the experimental works. Axial Bearing Capacity and Static Cyclic Loading Behaviours of the Model Piles and/or Pile Group are respectively examined by Aoyama et al., Hwang et al. and Ünsever et al. Case studies on Response of Laterally Loaded Nonlinear Piles are shown by Wei Dong Guo. Seismic Performance of the Piles from Field Measurements is discussed by Yamashita et al. Seismic Soil-structure-foundation Behaviours with Liquefaction concerns from the Shaking Table Test with Numerical Comparisons are discussed in the study made by Zhang et al.. An Overview of the Deep Foundation Systems of the High-rise Buildings can be found by Katzenbach and Dr. Leppla.

On the other hand, a number of numerical studies can be found on simulating the pile foundation behaviors. The topics include: Energy Pile with Feasible Material Modeling by Ma et al., Passive Loading Effects on Piles by Moormann and Aschrafi, Dynamic Load Testing on Pipe Piles Compared to Case Study by Phan Ta et al., Laterally Loaded Nonlinear Piles by Wei Dong Guo, Seismic Performance of the Piles using Reliability Method by Chang et al., and Bearing Behaviours of Pile Group and/or Piles respectively discussed by Wu and Yamamoto, Reul et al. and Ünsever et al.

It is the sincere wish of the editors that this issue can provide a good record for the advanced works on deep foundation research. Sincere gratitude is expressed by the editors to the delegates and the reviewers who have contributed tremendous time and efforts in making this Remarkable Issue feasible and to complete the work within very strict timelines.

Tatsunori Matsumoto
Jurgen Grabe &
Der Wen Chang
This special Issue on Deep Foundations as edited by Prof. Tatsunori Matsumoto, Prof. Jurgen Grabe and Prof. Der Wen Chang have thirteen excellent papers. Each paper being reviewed by at least two reviewers and some by more than two. The authors of the papers as per the Table of Contents and in that order are: C. Moormann and J. Aschrafi; Xiaolong Ma, Gang Qiu and Jürgen Grabe; L. Phan Ta, T. Matsumoto and H. Nguyen Hoang; K. Yamashita, T. Hashiba, H. Ito and T. Tanikawa; Y.S. Unseven, T. Matsumoto, S. Shimono and M.Y. Özkan; J.H. Hwang, Z.X. Fu, P.Y. Yeh and D.W. Chang; D.W. Chang, Y.H. Lin, H.C. Chao, S.C. Chu and C.H. Liu; Wei Dong Guo; Y. Wu and H. Yamamoto; F. Zhang, R. Oka, Y. Morikawa, Y. Mitsui, T. Osada, M. Kato and Y. Wabiko; S. Aoyama, L. Danardi, L. Bangan, W. Mao, S. Goto and I. Towhata; O. Reul, J. Bauer and C. Niemann; and R. Katzenbach and S. Leppla.

Indeed the papers are excellent and deal with: Numerical Investigation of Passive Loads on Piles in Soft Soils; Simulation of an Energy Pile using Thermo-hydro-mechanical Coupling and a Visco-hypoplastic Model; Studies on Dynamic Load Testing of an Open-ended Pipe Pile with a Case Study; Performance of Piled Raft Foundation Subjected to Strong Seismic Motion; Static Cyclic Load Tests on Model Foundations in Dry Sand; Axial Bearing Behaviour of a Model Pile in Sand under Multiple Static Cycles; Seismic PBD of Piles from Monte Carlo Simulation using EQWEAP Analysis with Weighted Intensities; Case Studies on Response of Laterally Loaded Nonlinear Piles; Analysis of the Effect of Pile Tip Shape on Soil Behaviour Around Pile; Shaking Table Test on Superstructure-foundation-ground System in Liquefiable Soil and its Numerical Verification; Model Loading Tests on the Bearing Behaviour of a Group Pile and Ground Deformation; the Bearing Behaviour of Pile Groups Subjected to Lateral Pressure due to Horizontal Soil Movements; Deep Foundation Systems for High-rise Buildings in Difficult Soil Conditions.

Thus this Issue is unique in its own way in covering, theory, and practice via laboratory and field tests on model piles and under full scale conditions. Both static and dynamic loading conditions as well as earthquake type of loading; also the laboratory tests also include shaking table tests.

The authors of the papers and the editors are to be congratulated for this master-piece of work. Both Prof Tatsunori Matsumoto and Prof Der Wen Chang are also the guest editors of our June 2011 Issue of the journal and this Issue have seen the contributions of Prof. Jurgen Grabe as well as a Guest Editor.

We hope this Issue of the Journal will be of immense value to researchers and practitioners.

K. Y. Yong
N. Phienwej
T. A. Ooi
A. S. Balasubramaniam
JUNE 2014: SPECIAL ISSUE ON DEEP FOUNDATION

Editors: Tatsunori Matsumoto, Jurgen Grabe & Der Wen Chang

TABLE OF CONTENTS

List of Papers

Numerical Investigation of Passive Loads on Piles in Soft Soils
By C. Moormann and J. Aschrafi
Page 01

Numerical Simulation of an Energy Pile Using Thermo-Hydro-Mechanical Coupling and a Visco-Hypoplastic Model
By Xiaolong Ma, Gang Qiu, Jurgen Grabe
Page 12

Numerical Studies on Dynamic Load Testing of an Open-ended Pipe Pile and a Case Study
By L. Phan Ta, T. Matsumoto and H. Nguyen Hoang
Page 17

Performance of Piled Raft Foundation Subjected to Strong Seismic Motion
By K. Yamashita, T. Hashiba, H. Ito and T. Tanikawa
Page 33

Static Cyclic Load Tests on Model Foundations in Dry Sand
By Y.S. Unsever, T. Matsumoto, S. Shimono and M.Y. Özkan
Page 40

Axial Bearing Behaviour of a Model Pile in Sand Under Multiple Static Cycles
By J. H. Hwang, Z. X. Fu, P. Y. Yeh, D. W. Chang
Page 52

Seismic PBD of Piles from Monte Carlo Simulation Using EQWEAP Analysis with Weighted Intensities
Page 62

Case Studies on Response of Laterally Loaded Nonlinear Piles
By Wei Dong Guo
Page 70

Le Tip Shape on Soil Behaviour Around Pile
By Y. Wu and H. Yamamoto
Page 78

Shaking Table Test on Superstructure-foundation-Ground System in Liquefiable Soil and Its Numerical Verification
By F. Zhang, R. Oka, Y. Morikawa, Y. Mitsui, T. Osada, M. Kato and Y. Wabi
Page 90

Model Loading Tests on Bearing Behaviour of a Group Pile and Ground Deformation in Sand
By S. Aoyama B. Liu L. Danardi W. Mao S. Goto and I. Towhata
Page 96

Numerical Study on the Bearing Behaviour of Pile Groups Subjected to Lateral Pressure due to Soil Movements
By O. Reul, J. Bauer and C. Niemann
Page 106

Deep Foundation Systems for High-rise Buildings in Difficult Soil Conditions
By R. Katzenbach and S. Leppla
Page 115
Failure mode of compacted sand piles (After Kitazume et al., 2014)

Unsupported cavity (After König et al., 2014)

View of a soil confined coal ash embankment (After Viswanadham & Mathur, 2014)

Run-out modelling of Byneset landslide (After Thakur & Nigussie, 2014)
Prof. B.V.S. Viswanadham

Prof. Viswanadham obtained his PhD (Dr.-Ing.) from the Ruhr-University of Bochum, Germany in November 1996. He obtained his Bachelor degree in Civil Engineering from the Andhra University, Visakhapatnam, India in 1987 and thereafter did his Master of Technology in Civil Engineering with Geotechnical Engineering as a specialization from the Indian Institute of Technology Madras (IIT Madras), Chennai, India in 1989. Before joining the Indian Institute of Technology Bombay (IIT Bombay) in December 1998, he worked as a Senior Project Officer, Department of Ocean Engineering, IIT Madras and as a Scientist, Geotechnical Engineering Division, Central Road Research Institute, New Delhi for about eleven years. Currently, Prof. Viswanadham is working as a Professor in the department of Civil Engineering with geotechnical engineering as a specialization. The research interest of Prof. Viswanadham is on: (1) Centrifuge model studies on the behaviour of geotechnical structures; (2) Environmental Geotechnics with a special reference to landfill waste containment systems; (3) Ground improvement using Geosynthetics and studies on the behaviour of geosynthetic reinforced soil structures; (4) Natural hazard mitigation – landslides and slope protection; (5) Bulk utilization of waste materials especially coal ash. He has published 120+ technical papers in peer-reviewed international journals/International conferences/National conferences.

Prof. Viswanadham is a Co-ordinator of the National Geotechnical Centrifuge Facility available at IIT Bombay. He has focused in disseminating knowledge on centrifuge modelling to Students/Professionals through courses (for both undergraduate and post-graduate levels) and continuing education programme courses at IIT Bombay with an aim to establish centrifuge modelling technique as an essential tool for studying problems in geotechnical and Geoenvironmental Engineering. Prof. Viswanadham is the Member of the Technical Committee for Physical Modelling on Geotechnics (TC104) of the International Society of Soil Mechanics and Geotechnical Engineering (ISSMGE), and the Chair of the 1st Asian regional workshop on the Centrifuge Modelling for Geotechnical Infrastructure to be held in IIT Bombay in November 14-16, 2012.
Prof. Christophe Gaudin

Prof. Gaudin graduated with a Doctorate in Engineering Science from the Ecole Centrale de Nantes in November 2002. He subsequently joined the Centre for Offshore Foundation Systems (COFS) in July 2003 and was appointed as Manager of the UWA centrifuge facilities. He was promoted Research Professorial Fellow in 2009 and hold since the position of Deputy Director of COFS. His research interests cover offshore anchoring systems and shallow foundations, pipeline-soil interaction and similitude principles associated with centrifuge modelling, for which he has authored 90+ referred publications.

As manager of the UWA centrifuge facilities and a team of 8 technicians, Prof Gaudin has focused on establishing centrifuge modelling techniques as an essential tool to assist the offshore industry in developing and designing foundation solutions. He has built a strong relationship with the offshore industry, raising over S3.5M of research funding and producing 50+ consulting reports.

Since 2010, Prof. Gaudin is the Chair of the Technical Committee for Physical Modelling on Geotechnics (TC104) of the International Society of Soil Mechanics and Geotechnical Engineering (ISSMGE), and the Chair of the 8th International Conference on Physical Modelling in Geotechnics to be held in Perth in 2014. His goals as TC Chair for the current term are notably to increase awareness of centrifuge modelling techniques and capabilities in the geotechnical engineering community, both in academia and industry, and to support the emergence of new centrifuge centres around the world.

Prof. Tom Schanz

Prof. Tom Schanz received his PhD at ETH Zurich on the mechanical behavior of granular mixture. This period followed a PostDoc stay at Kagoshima University (Japan). Thereafter he received his habilitation at University Stuttgart (Germany). After ten years as Professor at Bauhaus-University Weimar (Germany) he is nowadays head of the Laboratory of Foundation Engineering, Soil- and Rock Mechanics at Ruhr-University Bochum, Germany. The laboratory is running currently two geotechnical centrifuges since about 30 years. Research projects involving these equipments cover all subjects from environmental engineering, natural hazard assessment and nowadays problems involving unsaturated soil mechanics. Beside the centrifuge center the laboratory is running an excellent equipped soil dynamics and clay lab. Tom’s research papers cover a wide range of theoretical, experimental and numerical subjects, as unsaturated soil mechanics, physico-chemical clay behavior, constitutive models, earthquake engineering and application of numerical methods to geomechanical problems. Tom is member of international committees as Unsaturated soils and European Numerical methods, he is chairman of the German committee for Numerical Methods in Geotechnics.
FORWARD

By Prof Viswanadham, and Dr.Ooi Teik Aun & Dr. Hanh Quang Le

A growing number of papers were received from time to time by authors who have an active interest in the journal. It is the only journal and SE Asia and we need to cater well for all authors.

As such, this Issue of the Journal is in two parts. The First Part is edited by Prof. Viswanadham and his team on Centrifugal Model Tests. The second part is edited by the in-house editors of the Journal.

Part 1: Centrifuge-based Physical Modeling

It is a pleasure for us to be Guest Editors for this Special Issue on Centrifuge-based Physical Modeling. There are seven excellent papers:

Centrifuge Modelling of Improved Ground; Simulation of Soil Movement in Geotechnical Centrifuge Testing – Deep Excavations, Tunnelling, Deposit; Run-out of sensitive clay debris: significance of the flow behaviour of sensitive clays; Verification of the Generalized Scaling Law for Flat Layered Sand Deposit; Performance of Rail Embankments Constructed with Coal Ash as a Structural Fill Material: Centrifuge study; Centrifuge Model Tests on the Use of Geocomposite as an Internal Drain in Levees; Field scale tests for determination of pullout capacity of suction pile anchors under varying loading conditions.

The authors of these papers are M. Kitazume, Y. Morikawa and S. Nishimura; D. König, O. Detert andT.Schanz; V. Thakur and D. Nigussie; T. Tobita, S. Escoffier, J. L. Chazelas and S. Iai; B.V.S. Viswanadham and V.K. Mathur; Vijaya Ravichandran, R. Ramesh, S. Muthukrishna Babu, G.A.Ramadass, M.V.Ramanamoorthy and M.A. Atmanand

With an aim of disseminating knowledge and expertise about the centrifuge based physical modelling techniques, the Technical committee TC 104 on Physical Modelling in Geotechnics of the International Society of Soil Mechanics and Geotechnical Engineering (ISSMGE) is organizing regional workshops first in Europe and Asia. The first Asian workshop on Physical Modelling in Geotechnics (Asiafuge2012) was held in Mumbai, India in November 14-16, 2012 and was organised in association with Indian Institute of Technology Bombay, Mumbai, India, and the Indian Geotechnical Society Delhi with an emphasis on the application of centrifuge-based physical modelling for infrastructure development. Selected themes included soft ground problems, foundations, deep excavations, slopes and embankments, earthquakes, climate change, ground improvement techniques, tunnels, offshore foundation systems, environmental geotechnics, geosynthetics and novel construction techniques in infrastructure geotechnics. The above papers were selected by a scientific committee consisting of delegates, who attended Asiafuge 2012.

B.V.S. Viswanadham (Lead Guest Editor)
C. Gaudin
T. Shanz
Part 2: Contributed Papers

In this part there are 7 contributed papers on mobile information system for risk management in urban underground construction; Design methods in Segmental Tunnel Linings; Challenges in constructing urban tunnels; Bulk compression of dredges soils; Energy piles; Bored piles in residual soils and Centrifugal shaking table tests on reinforced earth embankments.

The authors of the papers are: Hanh Quang Le and Bin-Chen Benson Hsiung; N.A. Do, D. Dias, P.P. Oreste, I. Djeran-Maigre; R. Katzenbach and S. Leella; Hiroshi Shinsha and Takahiro Kumagai; A.M. Tang, J.M. Pereira, G. Hassen, N. Yavari; Mutiasani Dianmarti Kusuma and Eng-Choon Leong; W.Y. Hung, J.H. Hwang, C.J. Lee.

The editorial team of the contributed papers are most grateful to the authors and the reviewers for their excellent job. Most papers in Part 2 were presented in Geotech Hanoi 2013, but were modified significantly and had been subjected to extensive review.

Ooi Teik Aun (Lead Editor Part 2)
Hanh Quang Le
Noppodol Phienwej
ACKNOWLEDGEMENT

A growing number of contributed papers are now received for the journal. As such this Issue is in two parts; Part 1 is on Centrifuge based Physical Modelling with Prof. B.V.S. Viswanadham as lead editor. There are six papers contributed in this part. Part 2 of the Issue is on contributed papers as edited by In-house Editors Dr. Ooi Teik Aun and Dr. Hanh Quang Le. The future Issues of the Journal will also have papers edited by Guest Editors on theme Issues and contributed papers on a wide range of topics which are of great interest to our Geotechnical Community in SE Asia and elsewhere.

The topics and the authors are adequately described in the Foreword. The reviewers are not named here. But most papers had more than two reviewers. Special thanks are extended to the Editors, authors and reviewers for their excellent work.

K. Y. Yong
N. Phienwej
T. A. Ooi
A. S. Balasubramaniam
GEOTECHNICAL ENGINEERING

SEPTEMBER 2014: SPECIAL ISSUE ON CENTRIFUGE MODELLING OF GEOTECHNICAL INFRASTRUCTURE

Editors: B.V.S. Viswanadham, Christophe Gaudin & Tom Schanz

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>List of Papers</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrifuge Modelling of Improved Ground</td>
<td>01</td>
</tr>
<tr>
<td>By M. Kitazume, Y. Morikawa and S. Nishimura</td>
<td></td>
</tr>
<tr>
<td>Simulation of Soil Movement in Geotechnical Centrifuge Testing – Deep Excavations, Tunnelling, Deposit</td>
<td>12</td>
</tr>
<tr>
<td>By D. König, O. Detert and T. Schanz</td>
<td></td>
</tr>
<tr>
<td>Run-out of Sensitive Clay Debris: Significance of the Flow Behavior of Sensitive Clays</td>
<td>22</td>
</tr>
<tr>
<td>By V. Thakur and D. Nigussie</td>
<td></td>
</tr>
<tr>
<td>Verification of the Generalized Scaling Law for Flat Layered Sand Deposit</td>
<td>32</td>
</tr>
<tr>
<td>By T. Tobita, S. Escoffier, J. L. Chazelas and S. Iai</td>
<td></td>
</tr>
<tr>
<td>Performance of Rail Embankments Constructed with Coal Ash as a Structural Fill Material: Centrifuge Study</td>
<td>40</td>
</tr>
<tr>
<td>By B.V.S. Viswanadham and V.K. Mathur</td>
<td></td>
</tr>
<tr>
<td>Field Scale Tests for Determination of Pullout Capacity of Suction Pile Anchors Under Varying Loading Conditions</td>
<td>49</td>
</tr>
<tr>
<td>By Vijaya Ravichandran, R. Ramesh, S. Muthukrishna Babu, G.A. Ramadass, M.V.Ramanamoorthy and M.A. Atmanand</td>
<td></td>
</tr>
<tr>
<td>A Novel Mobile Information System for Risk Management of Adjacent Buildings in Urban Underground Construction</td>
<td>52</td>
</tr>
<tr>
<td>By Hanh Quang Le and Bin-Chen Benson Hsiung</td>
<td></td>
</tr>
<tr>
<td>Comparison Between Design Methods Applied to Segmental Tunnel Linings</td>
<td>64</td>
</tr>
<tr>
<td>By N.A. Do, D. Dias, P.P. Oreste, I. Djeran-Maigre</td>
<td></td>
</tr>
<tr>
<td>Challenging Construction Projects Related to Urban Tunnels</td>
<td>71</td>
</tr>
<tr>
<td>By R. Katzenbach and S. Leppla</td>
<td></td>
</tr>
<tr>
<td>Bulk Compression of Dredged Soils by Vacuum Consolidation Method Using Horizontal Drains</td>
<td>78</td>
</tr>
<tr>
<td>By Hiroshi Shinsha and Takahiro Kumagai</td>
<td></td>
</tr>
<tr>
<td>Mechanical Behavior of Energy Piles in Dry Sand</td>
<td>86</td>
</tr>
<tr>
<td>By A.M. Tang, J.M. Pereira, G. Hassen, N. Yavari</td>
<td></td>
</tr>
<tr>
<td>Estimating Side Resistance of Bored Pile in Residual Soils</td>
<td>90</td>
</tr>
<tr>
<td>By Mutiasani Dianmarti Kusuma and Eng-Choon Leong</td>
<td></td>
</tr>
<tr>
<td>Seismic Response of Geosynthetic Reinforced Earth Embankment by Centrifuge Shaking Table Tests</td>
<td>96</td>
</tr>
<tr>
<td>By W.Y. Hung, J.H. Hwang, C.J. Lee</td>
<td></td>
</tr>
</tbody>
</table>
Computational representation of sand particles in the Eulerian-Lagrangian Modeling of coastal sediment transport (After Sun et al., 2014)

Sketch of the drag anchor installation and its FE model (After Liu and Zhao, 2014)
Dr. Shinji Sassa

Dr. Shinji Sassa is Head of Soil Dynamics Group and Research Director of Asia-Pacific Center for Coastal Disaster Research (APaC-CDR) at Port and Airport Research Institute, Japan. He obtained his Dr. Eng. from Kyoto University. He is best known for his seminal works on wave-induced seabed liquefaction that have been extensively cited worldwide. His main research areas are Waterfront and Coastal Geotechnics, Subaqueous Sediment Gravity Flows and Ecological Geotechnics. These pioneer and address the multidisciplinary research encompassing Geotechnics, Hydraulic/Coastal Engineering, Geophysics and Ecology. He was an invited panelist, twice, at the 15th and 17th International Conference on Soil Mechanics and Geotechnical Engineering, ISSMGE. He has been a member of the International Geoscience Programme of United Nations Educational, Scientific and Cultural Organization on Submarine Mass Movements and Their Consequences, and served as a panelist leader at the UNESCO SMMTC conference in Kyoto 2011. He is also the Technical-Oversight-Committee nominated member of TC213 on Scour and Erosion of ISSMGE. He is the recipient of several distinguished awards, including the Commendation for Science and Technology by the Minister of Education, Culture, Sports, Science and Technology, the Best Paper Award twice and the Best Technical Development Award from the Japanese Geotechnical Society and the Presidential Award from PARI. His selected papers have been published in the world-leading journals in the diverse fields of geotechnics, geophysics and ecology such as Géotechnique, Journal of Geophysical Research, Geophysical Research Letters and Marine Ecology Progress Series concerning liquefaction, sediment transport and geomorphodynamics, submarine landslides, and benthic ecology in estuarine, coastal and marine area.

Prof. Poul V. Lade

Dr. Poul V. Lade joined The Catholic University of America (CUA) in Washington, D.C. in 2003. He was educated at the Technical University of Denmark in Copenhagen and received his Ph.D. degree at University of California at Berkeley in 1972. Before coming to CUA, he was on the faculty at UCLA for 21 years (1972-1993) before moving to The Johns Hopkins University in Baltimore (1993-1999) and to Aalborg University in Denmark (1999-2003). He was a member of Geotechnical Engineering Technical Group in Los Angeles from 1974 and he served as chairman in 1978-79.

Professor Lade’s research interests in Geomechanics include experimental methods, three-dimensional stress-strain and strength behavior of soils during monotonic loading and large three-dimensional stress reversals, stability, instability and liquefaction of granular materials, time effects in soils, constitutive modeling of frictional materials such as soil, rock, and concrete employing elasticity and work-hardening, isotropic and kinematic plasticity theories, and deformation and stability analyses of foundation engineering problems. He has given numerous conference presentations and short courses on stress-strain behavior and constitutive modeling of soils in North America, Europe, Asia, and Australia/New Zealand. He has nearly 300 publications based on research performed with support from the National Science Foundation (NSF) and from the Air Force Office of Scientific Research (AFOSR). His Science Citation Index is approximately 3000 and his H-index is currently 29.
Professor Lade is a member of several geotechnical engineering societies and he currently serves as Editor for the Americas of Geomechanics and Engineering (Techno Press, Korea), and he serves on the Editorial Boards of six other journals dealing with Geomechanics and Geotechnical Engineering. He was awarded “Professor Ostenfeld’s Gold Medal for original contributions to engineering science research on behavior and constitutive modeling of soils” from the Technical University of Denmark in 2001, and he was elected member of the Danish Academy of Technical Sciences in 2001.

Prof. Li-zhong Wang

Prof. Lizhong Wang is a vice dean of Civil Engineering and Architecture College, Zhejiang university, China. He earned his Phd in Zhejiang University in 1995 and became a Professor in 2000. He was a visiting scholar in NGI in 2006. Prof. Lizhong Wang has been long engaged in the research on marine soil mechanics and marine geotechnology. His research includes the constitutive behavior of marine soils, offshore pipelines, mooring systems, subsea tunneling, seabed geohazards and offshore wind turbine foundations.

Prof. Lizhong Wang was granted the first prize in Scientific and Technological Progress Award of Chinese Universities in 2011(Rank No.1). His research achievements were successfully applied in more than 20 major projects both at home and abroad. He was granted one national invention patent and four utility patents. Besides, he participated in establishing standards and engineering design guide. He has published 108 Journal papers, including 34 SCI-indexed and 60 EI-indexed papers. His research achievements were recognized by the international peers and he was appointed as an international external evaluator in the joint project of Bangladesh and Norway. He organized International symposium of coastal & offshore geotechnics in 2012.

Prof. Y.K. Chow

Professor CHOW Yean Khow joined the National University of Singapore (NUS) as a in 1982 and became a Professor in 1999. Prior to joining NUS, he practised as an offshore geotechnical engineer with Fugro Limited (UK), mainly involved in the design and installation of offshore foundations in the North Sea. He served as the Head of the Division of Geotechnical and Transportation Engineering from 1995 to 1998. He was the Deputy Head (Administration) of the Department of Civil Engineering from 1998 to 2000. From 2000 to 2003, he was Vice-Dean (Graduate Studies) and from 2003 to May 2008 Vice-Dean (Academic Affairs & Graduate Studies) of the Faculty of Engineering. He is the Executive Director of the Centre for Offshore Research & Engineering (CORE) from July 2008.

Professor Chow’s main research interests are in offshore foundation engineering, offshore pipelines/risers, computational geomechanics, soil-structure interaction, piles and piled raft foundations, and effects of construction activities such as deep excavations and tunnelling on pile foundations. He has published extensively, with over 200 technical publications including over 80 in international refereed journals. He is on Editorial Board of the following international journals: International Journal of Geomechanics (ASCE), Computers and Geotechnics (Elsevier), and Geomechanics and Geoengineering (Taylor & Francis). He is a member of the Board of Directors of the International Association for Computer Methods and Advances in Geomechanics. He is a Registered Professional Engineer (Civil) and a Specialist Professional Engineer in Geotechnical Engineering in Singapore. He has served as geotechnical consultant to numerous projects in Singapore and the region.
Prof. Dong Sheng Jeng

Prof. Dong Sheng Jeng is currently at Division of Civil Engineering, the School of Engineering, Physics and Mathematics, University of Dundee. He was educated in National Chung-Hsing University in Taiwan and received his Doctoral Degree from the University of Western Australia. Prof. Jeng was also at the Griffith University and University of Sydney before as a staff member. Prof. Jeng has been working in the area of offshore geotechnics since 1993. His most significant contributions have been in the field of coastal geotechnical engineering, specifically issues associated with wave–seabed–structure interaction (WSSI), which have a major bearing on the understanding and construction of coastal structures. He established the first analytical solutions for the inherent problems of WSSI in 3D short-crested wave systems and revised the conventional consolidation equation for anisotropic seabeds with variable permeability to obtain closed-form solutions. His 3D models allow the determination of wave-induced oscillatory liquefaction in front of breakwaters under obliquely incident wave; this represents the most dangerous condition and one that cannot be dealt with using either 1D or 2D models. My analytical solutions have been widely used for verifying numerical simulations and for determining wave surface profiles using measured pore pressure in marine sediments. These solutions were the basis of a major chapter in ‘The mechanics of scour in the marine environment’ (Chapter 10, Sumer & Fredsøe, 2002) and have been widely used by coastal engineers for the prediction of wave-induced oscillatory liquefaction around marine structures and the installation of in situ facilities.

Currently, Prof. Jeng and his students are working on the development of poro-elastoplastic models for post-liquefaction and densification in marine sediment under dynamic loadings (such as waves, currents and earthquakes etc.). This is also part of his current EU project—MERMAID (2012-2016). They are also establishing new conceptual model for pore pressure accumulations in marine sediment with instant cyclic shear stresses, unlike the existing models based on the maximum cyclic shear stresses.

Prof. Jeng has won a large number of competitive research grants in offshore and coastal geotechnics and has published in most of the leading Geotechnical Engineering and other journals; His journal publications exceed over one hundred.

Prof. Christophe Gaudin

Prof. Gaudin graduated with a Doctorate in Engineering Science from the Ecole Centrale de Nantes in November 2002. He subsequently joined the Centre for Offshore Foundation Systems (COFS) in July 2003 and was appointed as Manager of the UWA centrifuge facilities. He was promoted Research Professorial Fellow in 2009 and hold since the position of Deputy Director of COFS. His research interests cover offshore anchoring systems and shallow foundations, pipeline-soil interaction and similitude principles associated with centrifuge modelling, for which he has authored 90+ referred publications.

As manager of the UWA centrifuge facilities and a team of 8 technicians, Prof Gaudin has focused on establishing centrifuge modelling techniques as an essential tool to assist the offshore industry in developing and designing foundation solutions. He has built a strong relationship with the offshore industry, raising over S$3.5M of research funding and producing 50+ consulting reports.

Since 2010, Prof. Gaudin is the Chair of the Technical Committee for Physical Modelling on Geotechnics (TC104) of the International Society of Soil Mechanics and Geotechnical Engineering (ISSMGE), and the Chair of the 8th International Conference on Physical Modelling in Geotechnics to be held in Perth in 2014. His goals as TC Chair for the current term are notably to increase awareness of centrifuge modelling techniques and capabilities in the geotechnical engineering community, both in academia and industry, and to support the emergence of new centrifuge centres around the world.

Prof. Fuping Gao
Prof. Fuping Gao is a Principal Investigator at the Key Laboratory for Mechanics in Fluid Solid Coupling Systems (LMFS) and serving as the Director of Division of Science-Technology & Finance, Institute of Mechanics, CAS. He obtained his Master degree in Geotechnical Engineering from Beijing Jiaotong University, and PhD in Offshore Engineering Mechanics from Institute of Mechanics CAS. He was a visiting Research Assistant at Hong Kong University of Science and Technology (HKUST) in 2000; a Post-doctoral Research Fellow at the Griffith University, and the University of Western Australia (2001-2002).

His research activities involve offshore seabed/soil dynamics and fluid-structure-soil interaction modeling with applications in the offshore engineering, with recent focuses on stability analyses of submarine pipeline and riser systems, foundations for offshore renewable energy exploitation, etc. He serves as Vice Chair of the Technical Committee of Geotechnics of Soil Erosion, International Society of Soil Mechanics and Geotechnical Engineering (ISSMGE), TPC member of the International Society of Offshore and Polar Engineering (ISOPE); also serves on the editorial board of the Journal of Hydrodynamics, Theoretical and Applied Mechanics Letters, Chinese Journal of Geotechnical Engineering.

SPECIAL FEATURE STORY ON “Challenges in the Design of Tall Building Foundations”
by Prof Harry G Poulos

Prof Harry G. Poulos

Harry Poulos obtained a Civil Engineering degree from the University of Sydney in 1961, and then went on to do a PhD degree in Soil Mechanics, graduating in 1965. He worked with the consulting firm of McDonald Wagner and Priddle for a year before joining joined the Department of Civil Engineering at Sydney University in 1965. He was appointed a Professor in 1982, a position which he held until his retirement in 2001. In 1989, he joined the consulting firm of Coffey Partners International, and is currently a Senior Principal with Coffey Geotechnics. He is also an Emeritus Professor at the University of Sydney, and an Adjunct Professor at the Hong Kong University of Science and Technology.

He has published books and technical papers on foundation settlements, pile foundations, and offshore geotechnics. His main research interests continue to be in deep foundations and their application to high-rise buildings, and to problems relating to ground movements near foundations.

He has been involved in a large number of major projects in Australia and overseas including the Docklands Project in Melbourne, the Crown tower development in Sydney, Egnatia Odos highway project in Greece, high-rise foundation problems in Hong Kong, the Emirates twin Towers in Dubai, the Burj Khalifa tower in Dubai, the Incheon 151 Tower in Korea, and the Dubai tower in Doha, Qatar.

He was elected a Fellow of the Australian Academy of Science in 1988 and a Fellow of The Australian Academy of Technological Sciences and Engineering in 1996, and in 1999 was made an Honorary Fellow of the Institution of Engineers Australia. In 2010, he was elected a Distinguished Member of the American Society of Civil Engineers, the first Australian to receive this honour, and in 2014, he was elected as a Foreign Member of the US National Academy of Engineering.

He has received a number of awards and prizes, including the Kevin Nash Gold Medal of the International Society of Soil Mechanics and Geotechnical Engineering in 2005. He was the Rankine Lecturer in 1989 and the Terzaghi Lecturer in 2004, and was selected as the Australian Civil Engineer of the Year for 2003 by the Institution of Engineers Australia. In 1993, he was made a Member of the Order of Australia for services to engineering.
Preface

The theme of the 2014 December issue is Offshore and Coastal Geotechnics. The guest editors for this special issue are Dr. Shinji Sassa at Port and Airport Research Institute, Japan, Prof. Poul V. Lade at The Catholic University of America, USA, Prof. Li-zhong Wang at Zhejiang University, China, Prof. Yean K. Chow at National University of Singapore, Prof. Dong Sheng Jeng at Griffith University, Australia, Prof. Christophe Gaudin at University of Western Australia and Prof. Fuping Gao at Chinese Academy of Sciences. Dr. Dariusz Wanatowski at The University of Nottingham Ningbo, China contributed to the editorial management. Prof. Bala as the Editor-in-Chief and Dr. Teik A. Ooi as the President of SEAGS strongly supported the launch of this special issue on Offshore and Coastal Geotechnics.

The topics and scope covered in this special issue are comprehensive and interdisciplinary, ranging from Offshore Foundations, Seabed Liquefaction, Scour and Erosion, Marine Slope Stability and Geotechnical Aspects of Dredging and Reclamation Works to Tsunami-Seabed-Structure Interaction. The issue is comprised of twelve papers with a selection of the authors from eight countries involving Asia, Australia, Europe and USA.

Sumer summarizes recent research advances in seabed liquefaction through the use of standard wave-flume tests and centrifuge wave-soil modelling and mathematical approaches together with their implications for the stability of marine structures. Sun et al. develops and validates a new hybrid Eulerian-Lagrangian modelling framework of coastal current-induced sediment transport and sand dune migration. Liu and Zhao presents a numerical study of the penetration mechanism and kinematic behaviour of the drag anchor in soils by performing a large deformation finite element analysis. Wang et al. describes and discusses the results of a series of specially designed water flume tests on the response of silty soils under the action of combined waves and currents. Luo et al. proposes a new pipeline stability analysis method that takes into account the three-dimensional scour and pipe sinkage that were observed in an innovative large experimental facility, named the O-tube. Kohan et al. describes an improved analytical method for accurately predicting the offshore spudcan extraction resistance in soft clay and validates the method against a large database of centrifuge model tests. Jostad et al. develops and validates a new finite element procedure that accounts for 3D cyclic undrained degradation of soils with its application to a foundation design of offshore structures. Monkul et al. proposes volumetric compressibility (m_v) as an indicator of liquefaction potential for sands and silty sands that are ubiquitous in offshore and coastal deposits on the basis of a series of isotropic compression and undrained triaxial tests. Lee et al. investigates the seismic responses of a gently sloped liquefiable sand deposit confined within parallel walls of different geometry using centrifuge modelling and assesses the wall effects in relieving the excess pore pressures and the lateral spreading. Chen et al. numerically investigates the pullout behaviour of circular plate in normally consolidated clay and presents a direct design method for obtaining the uplift capacity of a circular plate anchor embedded in soils with a linearly increasing shear strength. Kumagai et al. presents and validates a new restoration method of artificial tidal flats by use of pressure injection of slurry dredge clay through the combined use of laboratory and field experiments and the finite element analyses. Sassa reports some recent research advances on tsunami-seabed-structure interaction and discusses the stability assessment for the design of tsunami-resistant structures from geotechnical and hydrodynamic perspectives.

We consider that this special issue presents and illustrates the outcome of some of the state-of-the-art research on Offshore and Coastal Geotechnics, and hope that it will make an important contribution to this growing field in the years to come.

Shinji Sassa
Poul V. Lade
Li-zhong Wang
Yean K. Chow
Dong S. Jeng
Christophe Gaudin
Fuping Gao
Acknowledgement

The Year 2014 had been very successful in many ways. We were very fortunate to have an excellent Issue in March 2014 as edited by Prof. Buddima Indraratna and A/P Cholachat Rujikiatkamjorn. Prof. Buddhima Indraratna is currently Professor of Civil Engineering at the Faculty of Engineering, University of Wollongong. Concurrently, Buddhima is also the Research Director, Centre for Geomechanics and Railway Engineering; Program Leader, ARC Centre of Excellence in Geotechnical Science and Engineering; and Node Coordinator, CRC for Rail Innovation. This June Issue on Deep Foundations as edited by Prof. Tatsunori Matsumoto, Prof. Jurgen Grabe and Prof. Der Wen Chang have thirteen excellent papers. The authors of the papers and the editors of the June Issue are to be congratulated for that master-piece of work. A growing number of contributed papers were received for the journal. As such the September 2014 Issue was in two parts; Part 1 is on Centrifuge based Physical Modelling with Prof. B. Viswanatham as lead editor. There are six papers contributed in this part. Part 2 of the Issue is on contributed papers as edited by In-house Editors Dr. Ooi Teik Aun and Dr. Hanh Quang Le. We have always been keen to have a Special Issue on Centrifuge based Physical modelling. This December Issue on Offshore and Coastal Geotechnics is edited by Prof Shinji Sassa, Prof Poul V. Lade, Prof Lizhong Wang, Prof Yean K. Chow, Prof Dong S. Jeng, Prof Christophe Gaudin and Prof Fuping Gao. A Feature Story on “Challenges in the Design of Tall Building Foundations” by Prof Harry G. Poulos is also included for the first time in the Journal.

The Authors of the March 2014 Issue are from: Tokyo University of Science; University of Tokyo; Hokkaido Shinkansen Construction Bureau in Japan; University of Wollongong; Herriot-Watt University in UK; University of Technology Sydney; Geosyntec Consultants, Kennesaw; University of Wisconsin-Madison; Hokkaido University, Hokkubu Consultants in Tokyo; University of Texas at Austin; National Highway Authority in Pakistan; Norwegian Public Roads Administration; Suranaree University of Technology in Thailand; Federal University of Rio de Janeiro, Brazil; Fluminense Federal University in Brazil; Fugro In-situ Geotechnica, Brazil; Smoltczyk Partner, Germany; Indian Institute of Science, Bangalore in India;

The authors of the June Issue are from: University of Stuttgart, Germany; DB ProjectBau GmbH, Hannover, Germany; Hamburg University of Technology, Germany; HAMCU University of Architecture, Vietnam; Kanazawa Graduate School of natural Science & Technology, Japan; South Vietnam Bridge Road Building Institute in Vietnam; Takanaka Corporation in Japan; Middle-East Technical University in Turkey; National Central University, Taiwan; National Tamkang University Taiwan; Hiroshima University in Japan; Nagoya Institute of Technology in Japan; University of Kassel, Germany; Technical University of Darmstart, Germany;

September 2014 Issue Authors are from: Tokyo University of Technology; Port and Airport Research Institute of Japan; Ruhr University of Bochum, Germany; Husker Geosynthetics GmbH, Gescher, Germany; Kyoto University, Japan; IFSTTAR at Nantes in France; IIT Bombay in India; NTPC Limited, Noida in India; National Institute of Ocean Technology, Chennai, in India; University of Transport & Communication, Vietnam; National Kaohsiung University of Applied Sciences, Taiwan; University of Lyon, France; Grenoble Alpes University, France; Politecnico di Torino, Italy; Hanoi University of Mining & Geology, Vietnam; Ecole des Ponts Paris Tech, France; Nanyang Technological University, Singapore.

The December 2014 Issues have authors from: 1: Technical University of Denmark, Virginia Tech, Blacksburg, USA; Karlsruhe Institute of Technology Tianjin University, China; Chinese Academy of Sciences, China; University of Western Australia, Perth, Australia, Norwegian Geotechnical Institute, Norwegian University for Science and Technology, NTNU, Trondheim, Norway NGI Inc., Houston, Texas, USA; GS Engineering & Construction Corp., Seoul, South Korea; Yeditepe University, Istanbul, Turkey; The Catholic University of America, USA; Istanbul Technical University, Turkey; National Central University, Jhongli City, Taiwan, National University of Singapore; Fugro Singapore Pte Ltd, Singapore; Hiroshima University, Japan; Port and Airport Research Institute, Yokosuka, Japan
We have had remarkable Guest Editors since 2011. They all have done excellent job and so are the 2014 Issues. The Preface is excellent and Dr. Shinji Sassa and the co-editors are thanked for all their contributions and also summarised contents of the papers. This Issue and others in 2014 will be of great use to our Geotechnical Community in SE Asia and elsewhere.

Additionally, an attempt is made to have Feature Stories in the Issues starting with December 2014 Issue. These feature stories are to be written by invited authors as drawn from our international community with extensive and authoritative experience. Prof. Harry G Poulos accepted our invitation to have an article in the December 2014 Issue. This is to be followed by Prof. Robert Mair of Cambridge University on “Geotechnical Challenges encountered in the London Metropolitan Subway System”, followed by Prof. Ikuo Towhata on “Coping with the Natural Hazards, Challenges in Japan and elsewhere”. The subsequent one is by Dr. John Endicott of his “Decades of experience in Major Projects in Hong and Singapore”. Prof. Harry G Poulos is thanked for helping to start this feature stories in our journal.

K. Y. Yong
N. Phienwej
T. A. Ooi
A. S. Balasubramaniam
DECEMBER 2014: SPECIAL ISSUE ON Offshore and Coastal Geotechnics

Editors: Shinji Sassa, Poul V. Lade, Lizhong Wang, Yean K. Chow, Dong S. Jeng, Christophe Gaudin & Fuping Gao

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>List of Papers</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recent Advances in Seabed Liquefaction and Its Implications for Marine Structures</td>
<td>01</td>
</tr>
<tr>
<td>By B. Mutlu Sumer</td>
<td></td>
</tr>
<tr>
<td>Eulerian–Lagrangian Modeling of Current-Induced Coastal Sand Dune Migration</td>
<td>15</td>
</tr>
<tr>
<td>By R. Sun, J. Wang, Y. Sakai and H. Xiao</td>
<td></td>
</tr>
<tr>
<td>Numerical Study of the Penetration Mechanism and Kinematic Behaviour of Drag Anchors Using a Coupled Eulerian-Lagrangian Approach</td>
<td>29</td>
</tr>
<tr>
<td>By Haixiao Liu and Yanbing Zhao</td>
<td></td>
</tr>
<tr>
<td>Cyclic Pore Pressure Generation in Silty Soils under the Action of Combined Waves and Current</td>
<td>40</td>
</tr>
<tr>
<td>By Yi-Fa Wang, Fu-Ping Gao, and Wen-Gang Qi</td>
<td></td>
</tr>
<tr>
<td>A Model for Predicting Pipeline Sinkage Induced by Tunnel Scour</td>
<td>46</td>
</tr>
<tr>
<td>By Chengcai Luo, Hongwei An, Liang Cheng and David White</td>
<td></td>
</tr>
<tr>
<td>Predicting Spudcan Extraction Resistance in Soft Clay</td>
<td>53</td>
</tr>
<tr>
<td>By Omid Kohan, Christophe Gaudin, Mark J. Cassidy, and Britta Bienen</td>
<td></td>
</tr>
<tr>
<td>A FE Procedure for Foundation design of Offshore Structures – Applied to Study a Potential OWT Monopile Foundation in the Korean Western Sea</td>
<td>63</td>
</tr>
<tr>
<td>By H.P. Jostad, G. Grimstad, K.H. Andersen, M. Saue, Y. Shin, and D. You</td>
<td></td>
</tr>
<tr>
<td>Compressibility as an Indicator of Liquefaction Potential</td>
<td>73</td>
</tr>
<tr>
<td>By M. Murat Monkul, Poul V. Lade, Ehsan Etminan, Aykut Senol</td>
<td></td>
</tr>
<tr>
<td>Centrifuge Modelling of the Seismic Responses of a Gently Sloped Liquefiable Sand Deposit Confined within Parallel Walls</td>
<td>78</td>
</tr>
<tr>
<td>By C.J. Lee, W.Y. Chung, and W.Y. Hung</td>
<td></td>
</tr>
<tr>
<td>Eulerian Finite Element Analysis for Uplift Capacity of Circular Plate Anchors in Normally Consolidated Clay</td>
<td>88</td>
</tr>
<tr>
<td>By Z. Chen, K. K. Tho, C. F. Leung and Y. K. Chow</td>
<td></td>
</tr>
<tr>
<td>Restoration Method of Artificial Tidal Flat by Use of Pressure Injection of Slurry Dredge Clay</td>
<td>93</td>
</tr>
<tr>
<td>By Takahiro Kumagai, Takashi Tsuchida, Changjin Ko and Hiroaki</td>
<td></td>
</tr>
<tr>
<td>Tsunami-Seabed-Structure Interaction from Geotechnical and Hydrodynamic Perspectives</td>
<td>102</td>
</tr>
<tr>
<td>By S. Sassa</td>
<td></td>
</tr>
<tr>
<td>Feature Storey on “Challenges in the Design of Tall Building Foundations”</td>
<td>108</td>
</tr>
<tr>
<td>By Harry G. Poulos</td>
<td></td>
</tr>
</tbody>
</table>
Embankment completed construction works at AIT (After Otha, 2015)

Results of electrical prospecting from resistivity test (After Ohtsu et al., 2015)

SEM photograph of Bangkok clay (After Por et al., 2015)

Dynamic creep test setup in wet condition (After Chompoorat and Likitlersuang, 2015)
March 2015 Issue: Special Country Issue of Thailand
– Dr. Surachat Sambhadharaksa Memorial Issue
Advances in Geotechnical Engineering for Infrastructure Developments in Thailand

Edited by: Suched Likitlersuang, Suksun Horpibulsuk, Suttisak Soralump, Tirawat Boonyatee Suchatvee Suwansawat, and Thanakorn Chompoorat

Suched Likitlersuang

Suched Likitlersuang graduated with a bachelor degree in civil engineering from Chulalongkorn University in 1998 and received a master in geotechnical engineering from Asian Institute of Technology in 2000. He attained a doctorate in civil engineering from the University of Oxford in 2004. Suched is currently a full professor at the Department of Civil Engineering, Chulalongkorn University. He is members of the Thai Geotechnical Society and the Engineering Institute of Thailand. He is also an Editorial Board member of Geotechnical Research and serves as a Guest Editor of the Southeast Asian Geotechnical Society Journal special issue for Thailand. Suched has published over 70 articles in international conference proceedings and international journals. His research interests include constitutive modelling for geomaterial and asphaltic concrete, stress-strain characteristic of soils, numerical analysis in geomechanics, geo-environments, geotechnical earthquake engineering and soil bioengineering.

Thanakorn Chompoorat

Thanakorn Chompoorat was born in Thailand in 1980. He graduated the Bachelor degree in Civil Engineering from Srinakharinwirot University in 2003. He also received the Master and the Doctoral degrees in Geotechnical Engineering from Chulalongkorn University in 2005 and 2009 respectively. He is currently an Assistant Professor and Assistant Dean for Research and Academic Service of the Department of Civil Engineering, University of Phayao. Thanakorn is a member of the Thai Geotechnical Society as well as the Engineering Institute of Thailand and presently also serves as an Editorial Secretary of the Southeast Asian Geotechnical Society Journal special issue for Thailand. His main research interests are soil behaviour and pavement material behaviour, numerical analysis for soil and pavement material, and constitutive modelling and plasticity.
Welcome to Geotechnical Engineering Journal of the Southeast Asian Geotechnical Society (SEAGS) and the Association of Geotechnical Societies in Southeast Asia (AGSSEA). It is our great pleasure to serve as the editors for the first issue of 2015 and also the special country issue of Thailand. Our editorial team consists of Prof. Suched Likitlersuang from Chulalongkorn University, Prof. Suksun Horpibulsuk from Suranaree University of Technology, Dr. Suttisak Soralump – President of Thai Geotechnical Society, Dr. Tirawat Boonyatee – Vice president of Thai Geotechnical Society, Prof. Suchatvee Suwansawat – President of Engineering Institute of Thailand, and Dr. Thanakorn Chompoorat from University of Phayao. We are also supported by Prof. A.S. Balasubramaniam as the editor-in-chief and Dr. Teik Aun Ooi as the president of SEAGS to launch this special issue. The rigorous blind peer-review process has been carried out by international reviewers, while every effort was carefully made to ensure the technical quality of the journal. We highly appreciate our reviewers for their time and effort.

The theme of this special issue is *Advances in Geotechnical Engineering for Infrastructure Developments in Thailand*. The articles cover a wide range of topics from theoretical soil mechanics to geotechnical applications for Thailand’s infrastructure developments. This special issue of Geotechnical Engineering Journal of the SEAGS & AGSSEA is comprised of fourteen articles with a selection of authors from four countries including Australia, China, Japan and Thailand.

The first invited paper by Ohta (2015) presents consolidation settlement due to the embankment construction on soft Bangkok clay. The paper also acknowledges the technical communication with Dr. Surachat Sambhandaraksa related to consolidation settlement. Two papers (Ohtsu et al., 2015 and Jotisankasa et al., 2015) present field studies of slope stability due to rainfall in Thailand. The topics related to ground improvement for soft soil are still interested in this issue such as using chemical stabilisation (Horpibulsuk, et al., 2015, Fan, et al., 2015 and Julphunthong, 2015) and vacuum consolidation technique (Shibata et al., 2015). Two papers (Ukritchon and Boonyatee, 2015 and Horpibulsuk and Liu, 2015) related to soil modelling and its parameter calibration are included in this issue as well. Chompoorat and Likitlersuang (2015) summaries mechanical properties of hot mix asphalt for pavement design. Undrained shear strength of Bangkok clays from various laboratory techniques are discussed by Ratananikom et al. (2015). A review of pile foundation design on Bangkok subsoils is presented by Boonyatee et al. (2015). 3D finite element analysis of the potential use of piled raft foundation on Bangkok subsoils is proposed by Watcharasawe et al. (2015). Lastly, Por et al. (2015) presents a laboratory investigation of expansive soil behaviour.

We consider that this special issue summaries some recent advances in geotechnical engineering for infrastructure developments in Thailand. We also hope that it could make an important contribution to other countries in the Southeast Asia.

Suched Likitlersuang
Thanakorn Chompoorat
ACKNOWLEDGEMENT

At the very outset, we would like to acknowledge the skill of Prof. Suched Likitlersuang, who headed the team of Guest Editors in producing this excellent issue. This issue honours the late Dr. Surachat Sambhandaraks a very long time friend of ours and a past president of the SEAGS. This is also the Thai country issue produced in such a short time, while some other country issues will only appear in 2016. The topics and the authors are adequately described in the Preface. The SEAGS and the AGSSEA as well as the Thai Geotechnical Society (TGS) are very grateful to the Editors, authors and reviewers for their excellent work.

A good teacher is often measured by the quality of his students. Dr. Surachat had graduated from Chulalongkorn University going to almost all the good universities to do doctoral studies. It is appropriate to have a brief biodata of Dr. Surachat.

Dr. Surachat Sambhandharaks, a past president of the Southeast Asian Geotechnical Society (SEAGS) from 1996 to 1999. A modest and clever achiever, Surachat was the earlier colleague of late Dr. Chai Muktabhant and Prof. Vichien Tengamnuey at Chulalongkorn University. Surachat always had an international outlook with his early education at the University of New South Wales in Australia in 1967; then his master degree from the Asian Institute of Technology (AIT) in 1970; later Surachat went to the Northwestern University and finally obtained his Sc.D. degree from the Massachusetts Institute of Technology (MIT), the United States of America in 1977. When he returned to Chulalongkorn University, Surachat was also a lecturer much in demand at the AIT. He was actively involved in most of the major projects in Bangkok and Thailand. He has real world experience in geotechnical engineering practice with sound knowledge on the fundamentals of soil behaviour. His practice is in embankments and piled foundations. He was a much sort out consultant in Bangkok. At AIT, we needed a person like Surachat to teach our design courses. Surachat also taught a popular course for non-soil engineers and this is really popular. Surachat, received the Outstanding Award of the Teaching from Chulalongkorn University and was voted as the best Geotechnical Engineer in Thailand in 2006. He was also, the chairman of the organizing committee of the 15th Southeast Asian Geotechnical Conference held in Bangkok in November 2004. Popularly called as Sam at MIT, Surachat has a charming personality always joyful and friendly in nature. Surachat hails from a good family with his father as the professor of surgery at the Faculty of Medicine in Chulalongkorn University. We all miss him a lot and his premature death is a great loss to his family and friends.

Finally, Dr. Surachat is highly respected internationally, Prof. Harry Poulos made the comment as follows:

“Dr Surachat was a leading figure in Geotechnical engineering in Thailand for many years, and a person who was vastly experiencing in identifying and solving problems related to foundations in the often-challenging ground conditions in Bangkok. I first met him at one of the early Southeast Asian Geotechnical conferences, and it was quite clear that his knowledge of the characteristics of Bangkok soils was second to none, and that he was well-placed to advise clients on foundation design in these soils. He was also was a congenial host and dinner companion at a number of conferences held in Bangkok. Apart from his practical geotechnical skills, he was able to pass on his knowledge to many students who had the privilege of studying under him at Chulalongkorn University and at AIT. He was very proud of his educational background, first in Australia, and then at MIT, where he studied with some of the pioneers of soil mechanics such as Lambe, Ladd and Whitman. He achieved recognition for his expertise both in Thailand and in Southeast Asia more generally, and with his passing, the Southeast Asian region has lost one of its elder statesmen in the geotechnical profession.”

Finally, We thank the Guest Editors, the authors of the papers and the reviewers, who made the most valued contribution in making this Issue feasible.

K. Y. Yong
N. Phienwej
T. A. Ooi
A. S. Balasubramaniam
TABLE OF CONTENTS

List of Papers

Settlement due to Consolidation
By H. Ohtaa

01

A Simulation of Surface Runoff and Infiltration due to Torrential Rainfall Based on Field Monitoring Results at a Slope Comprising Weathered Granite

12

Calcium Carbide Residue – A Cementing Agent for Sustainable Soil Stabilization
By S. Horpibulsuk, A. Kampala, C. Phetchuay, A. Udomchai and A. Arulrajah

22

Soil Parameter Optimization of the NGI-ADP Constitutive Model for Bangkok Soft Clay
By B. Ukritchon and T. Boonyatee

28

Laboratory Investigation of Hot Mix Asphalt Behaviour for Mechanistic-Empirical Pavement Design in Tropical Countries
By T. Chompoorat and S. Likitlersuang

37

Slope Stability and Pore-Water Pressure Regime in Response to Rainfall: A Case Study of Granitic Fill Slope in Northern Thailand
By A. Jotisankasa, K. Mahannopkul and A. Sawangsuriya

45

Evaluation of the Hydraulic Conductivity of Clayey Soil Mixed with Calcium-Bentonite Using Odeometer Tests
By R.D. Fan, Y.J. Du, S.Y. Liu and Y.L. Yang

55

Undrained Shear Strength of Very Soft to Medium Stiff Bangkok Clay from Various Laboratory Tests
By W. Ratananikom, S. Yimsiri and S. Likitlersuang

64

A Review on Design of Pile Foundations in Bangkok
By T. Boonyatee, J. Tongjarukae, T. Uaworakunchai and B. Ukritchon

76

Structured Cam Clay Model with Cementation Effect
By S. Horpibulsuk and M.D. Liu

86

Evaluation of Strength of Soft Ground Improved by Vacuum Consolidation
By T. Shibata, S. Nishimura, M. Fujii and A. Murakami

95
Chemical Stabilization of Loess in Northeast Thailand Using the Mixture of Calcined Marble Dust Waste and Sugarcane Bagasse Ash Waste
By P. Julphunthong

Numerical Analyses of Piled Raft Foundation in Soft Soil Using 3D-FEM
By K. Watcharasawe, P. Kitiyodom and P. Jongpradist

Investigation of Shrinkage and Swelling Behaviour of Expansive/Non-Expansive Clay Mixtures
By S. Por, S. Likitlersuang and S. Nishimura
Advancing an open-toe pipe pile (After Fellenius 2015)

Propagation of stress wave from impact hammer (After Massarsch and Fellenius 2015)

75 MN pile loading test (After Lin et al. 2015)

Model Pile Testing Setup (after Hamada et al. 2015)
GEOTECHNICAL ENGINEERING

June-2015 Issue: Pile Foundation
Edited By San-Shyan Lin, Charng Hsien Juang and Robert Liang

Prof. San-Shyan Lin
Professor Lin is a Professor at Department of Harbor and River Engineering of National Taiwan Ocean University in Taiwan. He received his Ph.D. degree in Civil Engineering from Washington University in St. Louis, Missouri USA in 1992. Dr. Lin was an engineer at Taiwan Area National Expressway Engineering Bureau from 1992 to 1994. Prof. Lin’s research and practical experiences have dealt with drilled shaft foundations, earth reinforced structures and effects of scouring on bridge foundations. Prof. Lin has published more than 110 peer-reviewed journal papers and conference papers. In 2012, Prof. Lin served as chairman of organization committee of 5th Taiwan-Japan workshop of earthquake and heavy rainfall held in Tainan, Taiwan; member of international organizing committee of 7th Asian young geotechnical engineer conference held in Tokushima, Japan; and member of both international advisory committee and technical committee of Geosynthetics Asia 2012 in Bangkok, Thailand. Prof. Lin is currently serving as the member of conference advisory committee of 18th Southeast Asian Geotechnical Conference and member of international advisory committee of International Symposium on Advances in Foundation Engineering. In addition, Prof. Lin is serving as the President of Taiwan Geotechnical Society and the CEO of Sino-Geotechnics Research and Development Foundation in Taiwan. Prof. Lin also served TRB A2K03 Committee on Foundations of Bridges and Other Structures between 1995 and 2004 and serves as a member on the editorial boards for four major international journals in geotechnical engineering.

Prof. Charng Hsein Juang
Dr. Juang received his Ph.D. degree in Civil Engineering from Purdue University in 1981. He joined the faculty of Clemson University in 1982 and has been with Clemson University ever since. Dr. Juang has a broad research interest in the field of geotechnical engineering. His past research work dealt with slope stability, soil-buried pipes interaction, soil and rock properties, pile foundations, fuzzy sets and uncertainty modeling in geotechnical engineering. His current research work deals with liquefaction, site characterization, braced excavation, reliability and probabilistic methods in geotechnical engineering, and fuzzy and neural network applications in geotechnical engineering. Dr. Juang has received a number of awards and honors. He was proud to be selected by his students through Chi Epsilon for Outstanding Teacher Award in 1985. Among his awards and honors are the Outstanding Research Paper Award by the Chinese Institute of Civil and Hydraulic Engineering (1976), the TK Hseih Award by the Institution of Civil Engineers of the United Kingdom (2001), the Clemson University Board of Trustees Award for Faculty Excellence (2002), election to ASCE Fellow (2007), and appointment to Chair Professor at National Central University, Taiwan. His professional services include:
- Chair, ASCE/GI Committee on Risk Assessment and Management (2009-2012); Secretary, (2003-2009); Member (1993-present)
- Co-Editor in Chief, Engineering Geology (2012-present)
- Associate Editor & Editorial Board Member, ASCE Journal of Geotechnical and Geoenvironmental Engineering (2004-2012)
- Editorial Board, Georisik (2009-present)
- Conference Chair, ASCE Geo Institute Specialty Conference, GeoRisk 2011, Geotechnical Risk Assessment and Management, Atlanta, June 26-28, 2011.
Prof. Robert Liang

Dr. Robert Liang holds a title of University Distinguished Professor in the Department of Civil Engineering at the University of Akron. He also serves as the Director for the Center for Infrastructure Materials and Rehabilitation. Since receiving his Ph.D. in 1985 from the University of California in Berkeley, Dr. Liang has been with the University of Akron. From 1994 to 2000, he served as Civil Engineering Department Chair. Dr. Liang has conducted research in areas such as geotechnical engineering, pavement engineering, and infrastructure materials and rehabilitation technologies. His research has resulted in more than 300 journal and conference papers, with practical impacts on design and construction practices. Dr. Liang is active in ASCE (American Society of Civil Engineers), TRB (Transportation Research Board), and DFI (Deep Foundation Institute) committee works. He serves as associate editor for the ASCE’s Journal of Engineering Mechanics and Journal of Geotechnical and Geoenvironmental Engineering. Currently, he is on the editorial board for several international journals, such as Georisk, and Journal of GeoEngineering. Dr. Liang received Wendell R. Ladue award from ASCE Akron-Canton Section for his outstanding contributions to the profession. He also received Louis Hill award from College of Engineering in recognition of his exemplary achievements in both research and teaching. He received outstanding service award from the Great Lakes Geotechnical and Geoenvironmental Engineering Organization for his service as the president of the organization. In recognition of his contributions to civil engineering, Dr. Liang was elected to Fellow of ASCE in 2009.
Prof Ikuo Towhata
President, Japanese Geotechnical Society (2014-2016)
Vice President for Asia, International Society for Soil Mechanics
and Geotechnical Engineering (2009-2017)
SPECIAL FEATURE STORY ON “Liquefaction Problems in the 21st Century”
by Prof Ikuo Towhata

Prof Ikuo Towhata

Prof Ikuo Towhata obtained his Bachelor of Engineering degree from the University of Tokyo in 1977. He obtained his Master of Engineering and Doctor of Engineering in 1979 and 1982 respectively from the same university. In 1985 he was Assistant Professor at the Asian Institute of Technology in Bangkok and in 1986 as Associate Professor at Chulalongkorn University in Bangkok. He returned to work in Tokyo University as an Associate Professor in 1987. In 1989 he was Associate research fellow at PWRI Ministry of Construction. He was Professor at Tokyo University from 1994 to 2014 and since 2015 he is Visiting Professor at Kanto Gakuin University, Department of Civil Engineering Yokohama Tokyo Japan. Professor Towhata has 32 years of research experience and his special areas of interest are Deformation characteristics of cohesionless soils; Dynamic analysis of earth structures during earthquakes; Permanent displacement of ground caused by seismic liquefaction; Soil improvement by densification and grouting; Stability of seabed in static and dynamic manners; Thermal effects on mechanical behavior of clays; Microscopic Observation of Granular Behavior of Sand Subjected to Shear; Dynamics of landslide and debris flow. Professor Towhata is active in public service and was Board member of Japanese Geotechnical Society for two terms; Board member of Japan Association for Earthquake Engineering for one term; Board member of Japan Landslide Society for two terms; Chairman of Editing Committee of Soils and Foundations Journal, the Japanese Geotechnical Society in 2005-2008; Chairman of Geotechnical Committee, Japan Society for Civil Engineers in 2007-2008; Vice President, Japan Association for Earthquake Engineering in June 2009-May 2011; President, Japanese Geotechnical Society in 2014-2016; Appointed Board Member and then Vice President for Asia, International Society for Soil Mechanics and Geotechnical Engineering in 2009-2017; Associate Member of Science Council Japan in 2014-2020. He is currently Member of the Japanese Geotechnical Society; Member of the Southeast Asian Geotechnical Society; Member of the International Society of Soil Mechanics and Geotechnical Engineering; Fellow member of the Japan Society of Civil Engineers and Member of the Japan Association for Earthquake Engineering. Professor Towhata has been invited to deliver Keynote Lectures and Special Lectures in many international conferences. He has published more than 600 papers and has published many books notably:

Professor Towhata has won many awards and among them the Japanese Geotechnical Society; Technological Development Award in 2015; Japan Society of Civil Engineers; Best book publication award in 2009; Japanese Geotechnical Society, Award for the Best Paper of the Year 2003; 2004 and the best twelve papers out of 600 at GeoEng2000 Conference at Melbourne in 2000
The theme of the 2015 June issue is Pile Foundations. The guest editors for this special issue are Professor San-Shyan Lin at National Taiwan Ocean University, Taiwan, Prof. Charng Hsein Juang at Clemson University, USA, and Prof. Robert Liang at Akron University, USA contributed to the editorial management. Prof. A.S. Balasubramaniam as the Editor-in-Chief and Dr. Teik Aun Ooi as the President of SEAGS strongly supported the launch of this special issue on Pile Foundations.

The topics and scope covered in this special issue are comprehensive and interdisciplinary, ranging from back-analysis of pile load test, piled-raft analysis, ground vibration caused by impact pile driving, analysis of bi-direction-cell test, effect of aging on barrette pile, comparison on dynamic response of a single pile using different approaches, response of “plug” in open-toe pipe pile, effect of toe grouting of IGM socketed drilled shaft, reliability-based design on foundation and ultimate resistance of drilled shaft by probabilistic approach. The issue is comprised of twelve papers with a selection of the authors from seven countries involving Canada, Japan, Lebanon, Sweden, Taiwan, Thailand and USA.

Niazi and Mayne develops new sets of shear stiffness reduction curves from the back-analyses of 299 static axial pile load tests from 61 sites towards the implementation of a non-linear load-displacement response method for pile foundations. Subsequently, the elastic continuum solution is exploited by them to present a methodology for drawing the stiffness reduction curves as functions of depth. These curves are further utilized in modeling the pile as a stack of smaller shaft segments embedded in multi-layered soils. Hamada et al. presents static cyclic lateral loading tests on large-scale piled raft foundations carried out to investigate the influence of vertical load and pile spacing ratios during earthquakes. Yamashita et al. applies and modifies the simple method proposed by Clancy and Randolph (1996) on piled raft analysis. Four case histories in Japan are examined through comparisons with the field monitoring results. Massarsch and Fellenius describe the application of the Swedish standard which regulates permissible ground vibrations caused by driving of piles, sheet piles, or ground compaction. Fellenius explains how to use the bidirectional-cell test data on a pile to establish the load distribution for the pile, which enabled determining the distribution of the effective-stress beta-coefficients for the pile response. Teparaksa presents testing process and discusses the result of different barrette pile static load tests, especially on aging effect on pile capacity. Lu and Chang presents a case study on dynamic behaviors of coal ash soils obtained in a landfilled field in north Taiwan and also the dynamic interaction of a single pile foundation sitting in the landfills. Fellenius recommends how to analyze the response of an open-toe pile. A comparison is also provided between the results of a simulated static loading test on a closed-toe and an open-toe pipe pile. Lin et al. presents the axial performance of two heavily instrumented drilled shafts, with and without toe grouting, socket in intermediate geomaterials in Taipei city. Abdallah et al. presents the results of a comprehensive investigation that is conducted to study the effect of choosing different proof-load test programs on the reliability of piles. Luo et al. evaluates and compares existing probabilistic approaches for determining the ultimate resistance of drilled shafts in sands considering the spatial variability of soil properties.

We consider that this special issue presents and illustrates the outcome of some of the state-of-the-art research on pile foundations, and hope that it will make an important contribution to this growing field in the years to come.
ACKNOWLEDGEMENT

The lead editor of the June 2015 Issue on Piled Foundation is Prof. San Shyan Lin with team members Prof. Charng Hsein Juang and Prof. Robert Liang. Prof. San Shyan Lin is of immense help to the SEAGS-AGSSEA Journal as a Member of the Team of Editor in Chief. It is worthy to mention that the Taiwan Geotechnical Society is the most active supporter of all SEAGS-AGSSEA activities including the Journal. There were many Issues of the Journal edited by members of CTGS (Chinese Taipei Geotechnical Society). They also contribute many articles and this is a most welcome culture which should be a model example to follow by other AGSSEA member countries. Gradually, we have been very successful in engaging members of AGSSEA to contribute to the journal and take much of the responsibility in contributing articles, engaged in reviewing and other aspects related to the journal. The country issues in 2016 and the Anniversary Issues in 2017 will further enhance the success in the active participation of AGSSEA members in the journal.

In the preface, Prof. San Shyan Lin and his team has already covered adequately the contents of the papers from an international set of prestigious authors and all articles were also reviewed by experts in the field. Details of the reviewers will be assembled in the December Issue for all the articles published in 2015. SEAGS-AGSSEA Journal is always very practice oriented and this well reflected in the contributions contained in this issue as well.

There are twelve excellent papers written by well known authors from : USA, Japan, Sweden, Canada, Thailand, Taiwan and other countries. No doubt, this Issue will be most useful to our Profession and all those who are engaged in Pile Foundation Research and Practice. Sincere thanks to all who have contributed to the success of this issue of our journal under the able leadership of Prof. San Shyan Lin.

We are grateful to Professor Ikuo Towhata for his contribution of Special Feature Story on “Liquefaction Problems in the 21st Century” in this issue.

K. Y. Yong
N. Phienwej
T. A. Ooi
A. S. Balasubramaniam
Table of Contents

<table>
<thead>
<tr>
<th>List of Papers</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational Soil Stiffness From Back-Analysis of Pile Load Tests Within Elastic Continuum Framework</td>
<td>01</td>
</tr>
<tr>
<td>By Fawad S. Niazi and Paul W. Mayne</td>
<td></td>
</tr>
<tr>
<td>Elastic Continuum Solution of Stacked Pile Model For Axial Load-Displacement Analysis</td>
<td>20</td>
</tr>
<tr>
<td>By Fawad S. Niazi and Paul W. Mayne</td>
<td></td>
</tr>
<tr>
<td>Lateral Loading Tests on Piled Rafts and Simplified Method to Evaluate Sectional Forces of Piles</td>
<td>29</td>
</tr>
<tr>
<td>By J. Hamada, T. Tsuchiya, T. Tanikawa and K. Yamashita</td>
<td></td>
</tr>
<tr>
<td>Applicability of Simple Method to Piled Raft Analysis in Comparisons With Field Measurements</td>
<td>43</td>
</tr>
<tr>
<td>By K. Yamashita, T. Tanikawa, and J. Hamada</td>
<td></td>
</tr>
<tr>
<td>Engineering Assessment of Ground Vibrations Caused by Impact Pile Driving</td>
<td>54</td>
</tr>
<tr>
<td>By K. Rainer Massarsch and Bengt Fellenius</td>
<td></td>
</tr>
<tr>
<td>Analysis of results of an instrumented bidirectional-cell test</td>
<td>64</td>
</tr>
<tr>
<td>By Bengt Fellenius</td>
<td></td>
</tr>
<tr>
<td>Deep Barrette Pile Capacity with Aging Effect</td>
<td>68</td>
</tr>
<tr>
<td>By W. Teparaksa</td>
<td></td>
</tr>
<tr>
<td>Case study of dynamic responses of a single pile foundation installed in coal ash landfills using effective stress analysis and EQWEAP</td>
<td>77</td>
</tr>
<tr>
<td>By C. W. Lu and D. W. Chang</td>
<td></td>
</tr>
<tr>
<td>The Response of A “Plug” in An Open-Toe Pipe Pile</td>
<td>82</td>
</tr>
<tr>
<td>By Bengt H. Fellenius</td>
<td></td>
</tr>
<tr>
<td>Effects of Toe Grouting on Axial Performance of Drilled Shafts Socket in Intermediate Geomaterial</td>
<td>87</td>
</tr>
<tr>
<td>By S.S. Lin, Y.L. Yin, K.C. Fu, Y.K. Lin, C.J. Kuo, and Y.H. Chang</td>
<td></td>
</tr>
<tr>
<td>Reliability-Based Design of Proof Load Test Programs for Foundations</td>
<td>94</td>
</tr>
<tr>
<td>By Y. Abdallah, S.S. Najjar and G. Saad</td>
<td></td>
</tr>
<tr>
<td>Probabilistic approaches for ultimate resistance of drilled shafts considering spatial variability</td>
<td>102</td>
</tr>
<tr>
<td>By Z. Luo, L. Wang, W. Gond, and C. Hsein Juang</td>
<td></td>
</tr>
<tr>
<td>SPECIAL FEATURE STORY ON “Liquefaction Problems in the 21st Century”</td>
<td>111</td>
</tr>
<tr>
<td>By I. Towhata</td>
<td></td>
</tr>
</tbody>
</table>
Photo 1 (a) Details of true triaxial loading and (b) the water proof chamber (After Yin et al, 2010)

(a) Compression test

(b) Swelling index

Photo 2 Resonant column apparatus
(After Kumar and Cherian, 2015)

Photo 3 Triangle plot of theoretical results for mixtures of Kaolinite, Illite and Montmorillonite
(After Ye et al, 2015)
Prof. Zhen-Yu Yin

Prof. Yin graduated from Zhejiang University, China in 1997 for his bachelor degree and from Ecole Centrale de Nantes, France in 2003 for his master degree. He got PhD from Ecole Centrale de Nantes, France in 2006 in the field of geotechnical engineering. He was promoted as professor in 2010 at Shanghai Jiao Tong University in China. Prof. Yin’s research topics include: (1) constitutive modeling for saturated soils; (2) microstructure and micromechanics for soils; (3) improvement technology for soft soils; (4) finite element analysis for geotechnical engineering. He has authored more than 50 papers in peer review journals such as Geotechnique, ASCE journals, IJSS, Nag etc.

In 2011, Prof. Yin was awarded “Professor of Exceptional Rank of Shanghai-Dongfang Scholar” by Shanghai Education Committee. Prof. Yin is now serving as committee member for both national and international associations (granular materials committee ASCE, Constitutive Relation and Strength Theory Committee of Chinese Society of Soil Mechanics and Geotechnical Engineering, Soil Mechanics Committee of Chinese Society of Theoretical and Applied Mechanics, Underground Engineering Committee of Shanghai Society of Civil Engineers). From 2010 up to 2012, Prof. Yin has received 8 research grants as main investigator, financed by European Union, Chinese National Science Foundation, Minister of Education of China, Shanghai Science and Technology Committee etc.

Prof. Jian-Hua Yin

Dr Jian-Hua Yin is currently a professor in the Department of Civil and Structural Engineering of The Hong Kong Polytechnic University. Professor Yin received a BEng degree in 1983 in Chinese Mainland, an MSc degree from Institute of Rock and Soil Mechanics of the Chinese Academy of Sciences in 1984, and a PhD from The University of Manitoba, Canada in 1990. Dr Yin has a mix of industrial and academic experiences. He joined Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University in 1995 as an Assistant Professor. He was promoted to an Associate Professor position in 1999, to a Professor position in 2002, and recently to the position of Chair Professor of Soil Mechanics in 2014. Professor Yin has a good track record in research and has played a leading role in development of advanced soil testing equipment, innovative fiber optical sensors, establishing a large-scale multi-purpose physical modeling facility for studying geo-hazards, organization of regional and international conferences. His research interests include (i) testing study of properties and behaviour of soils, (ii) elastic visco-plastic modeling, (iii) soft soil improvement, (iv) soil nails and slope analysis, (v) development and applications fiber optical sensors, (vi) soil-structure interface, and (vii) development of advanced/special lab test apparatus. Currently, Professor Yin serves as a Vice-President of International Association for Computer Methods and Advances in Geomechanics (IACMAG), Co-Editor of International Journal of Geomechanics, Co-Editor of Geomechanics and Geoengineering, and Associate Editor of Canadian Geotechnical Journal. He has received the honours of the prestigious “JOHN BOOKER Medal” in 2008, “Chandra S. Desai Excellence Award” in 2011 from IACMAG, and delivering the high-status 2011 “Huang Wenxi Lecture” in Chinese Mainland.
SPECIAL FEATURE STORY ON
“Soil Mechanics at Emmanuel College – Elegant, Rigorous and Relevant”
By John Burland

Professor John Burland

Born in the UK, Professor Burland was educated in South Africa and studied Civil Engineering at the University of the Witwatersrand. He returned to England in 1961 and worked with Ove Arup and Partners for a few years.

After studying for his PhD at Cambridge University, John Burland joined the UK Building Research Station in 1966, became Head of the Geotechnics Division in 1972 and Assistant Director in 1979. In 1980 he was appointed to the Chair of Soil Mechanics at the Imperial College London. He is now Emeritus Professor and Senior Research Investigator at Imperial College.

In addition to being very active in teaching (which he loves) and research, John Burland has been responsible for advising on the design of many large ground engineering projects world-wide including the underground car park at the Palace of Westminster and the foundations of the Queen Elizabeth II Conference Centre in London. He specialises in problems relating to the interaction between the ground and masonry buildings. He was London Underground's expert witness for the Parliamentary Select Committees on the Jubilee Line Extension underground railway and has advised on many geotechnical aspects of that project, including ensuring the stability of the Big Ben Clock Tower. He was a member of the international board of consultants advising on the stabilisation of the Metropolitan Cathedral of Mexico City and was a member of the Italian Prime Minister’s Commission for stabilising the Leaning Tower of Pisa.

He has received many awards and medals including the Gold Medal for engineering excellence of the World Federation of Engineering Organisations and the Gold Medals of the UK Institution of Structural Engineers and of the UK Institution of Civil Engineers. In 1994 he was awarded the Kevin Nash Gold Medal of the International Society of Soil Mechanics and Geotechnical Engineering ‘In recognition of outstanding services to ISSMGE, to International Goodwill and to International Geotechnical Practice and Education’. In 1996 he was awarded the Harry Seed Memorial Medal of the American Society of Civil Engineers ‘for distinguished contributions as an engineer, scientist and teacher in soil mechanics’. He is a Fellow of both the UK Royal Academy of Engineering and of the Royal Society of London and was appointed Commander of the Most Excellent Order of the British Empire in 2005.
SPECIAL FEATURE STORY ON
“Ground Improvement Methods for Port Infrastructure Expansion”
By Indraratna B., Heitor, A and Rujikiatkamjorn, C.

Prof. Buddhima Indraratna, PhD

Buddhima Indraratna is a Civil Engineering graduate from Imperial College, London, and obtained his PhD from the University of Alberta in 1987. He has worked in industry in several countries before becoming an academic at AIT during the period 1988-1991, in which he was an Assistant Professor and then Associate Professor. He was involved in a number of major infrastructure projects in Thailand and Southeast Asia during that time. Subsequently, his contributions to the analysis of 2nd Bangkok International Airport (Suvarnabhumi) are well-known and published in major international journals. Prof Indraratna’s significant contributions to geotechnical and railway engineering have been acknowledged through numerous national and international awards, including the 2016 Inaugural Ralph Proctor Lecture by the International Society of Soil Mechanics and Geotechnical Engineering, the most prestigious award in Transport Geotechnics. In 2009, he delivered the prestigious E.H. Davis Memorial Lecture of Australian Geomechanics Society for distinguished contributions to theory and practice of geomechanics. In 2014, he received the C.S. Desai Medal from the International Association for Computer Methods and Advances in Geomechanics (IACMAG) for outstanding contribution to geotechnical research and education. For his pioneering contributions to Australian railway innovations, he was honoured with the prestigious Business and Higher Education award by the Australian Government in 2009, Engineers Australia Transport Medal in 2011 and 2015 Australasian Railway Society’s Outstanding Individual Award. Over the past two decades, he has also received numerous best paper awards, for example Thomas Telford Premium Award by the Institution of Civil Engineers, UK and Robert Quigley Award by the Canadian Geotechnical Society. He was instrumental in changing the Australian standards the use of vertical drains in soft foundations soils and for revising the standards for railway ballast.

Prof Indraratna currently leads numerous projects funded by the Australian Research Council with over $15 million dollars over the past decade, and he has been a geotechnical consultant worldwide, and a United Nations consultant. He was also an Advisor to the Ministry of Science and Technology (Thailand) for new railway network planning and design, and an Advisor to the Government of Sri Lanka on Post-tsunami rehabilitation of railways. He has more than 550 publications including over 230 reputed journal papers, 9 Books and over 45 invited keynote papers. He has supervised over 50 PhD graduates and 30 Postdoctoral Fellows.

Professor Indraratna is a Fellow of the most prestigious Australian Academy of Technological Sciences and Engineering (FTSE), as well as a Fellow of several professional organisations including the Institution of Engineers, Australia (FIEAust), American Society of Civil Engineers (FASCE), Australasian Institute of Mining & Metallurgy (FAusIMM) and the Geological Society of UK (FGS).
This September 2015 issue of the journal contains fifteen interesting research papers and the details are described below. The time-dependency of the soft clay behaviour is studied in two papers by Wu et al and Ye et al as overview and interpretation of rate dependency and stress relaxation in soft clays respectively. In these papers, the strain rate dependent behaviour and under 1D and 3D stress conditions under complex loading conditions is studied through triaxial compression and extension tests under different OCR by Wu et al and the pore pressure development during stress relaxation by Ye et al. The latter paper also used stress relaxation curves in double logarithmic plane resulting in the development of a stress relaxation coefficient useful in analytical solutions for the 1D stress relaxation. A third paper by Bian et al proposes a new stress strain model based on CSSM for re-constituted clays which considers the effects of initial water contents. The model describes the undrained shear behaviour. With the decrease of initial water contents, the reconstituted clays experience enhanced strength, stiffness and dilation, which are not involved in the Modified Cam Clay model. These features can be captured by introducing a new hardening parameter (‘quasi-structure’ strength) into the conventional critical state model. The ‘quasi-structure’ strength increases with the decrease of initial water contents. The available test data on the undrained shear behaviour of reconstituted clays at different initial water contents are used to verify the proposed model, and the comparisons between computed and measured results show that the proposed model is able to predict the overall pattern of stress-strain curves, pore pressure variations and effective stress paths reasonably well, especially the ultimate undrained strength and pore pressure response at large strain.

The fourth paper is on the engineering behaviour of Shanghai soft clay by Lu et al by statistical analyses of the test data. The goodness-of-fits of normal distribution, log-normal distribution, exponential distribution and uniform distribution are assessed for each parameter using the Kolmogorov-Smirnov (K-S) method. The results show that the normal distribution is suitable for initial water content, specific gravity, plasticity index, liquidity index and unit weight, the log-normal distribution is suitable for initial void ratio and plastic limit, the exponential distribution is suitable only for liquid limit, and the uniform distribution is not recommended.

Wang et al in the fifth paper deal with the dynamic behaviour of frozen soils. The dynamic response of frozen soils is one of the significant factors that should be taken into account when designing and constructing infrastructures in cold regions. This paper firstly reviews the state-of-the-art of dynamic testing techniques including dynamic uniaxial/triaxial test, resonant column test, wave velocity test and the SHPB test. Then the correlations of dynamic indexes for frozen soils with test conditions are analyzed i.e., dynamic modulus, dynamic strength, damping ratio as well as dynamic Poisson’s ratio. The typical stress-strain relationships for frozen soils under dynamic loading are summarized such as empirical models, creep modelling and strength criterion for frozen soils. Finally promising prospects of the study in this paper is suggested.

Ye et al (in sixth paper) is on the mineral constituents of one dimensional compression behaviour of clayey soils. Only few data are available concerning the effect of the four main clay minerals, kaolinite (K), illite (I), montmorillonite (M) and chlorite (C), on the mechanical properties of clayey soils. This paper discusses the effect of different mineral contents on the compression and swelling indexes of clay mixtures in order to provide correlations between the mineralogical content of a clayey soil and its compressive properties. Four pure clay powders were used to prepare 34 clay mixtures (different proportions of K+I, K+I+M, K+I+C). Conventional oedometer tests were conducted on all the prepared samples. Based on the test results, the evolution of the compressive properties with the proportions of pure clays was estimated and relevant correlations are suggested. All the results demonstrate that the compression and swelling indexes are reasonably well correlated to the proportion of clay minerals. The content in montmorillonite influences significantly the compressive properties of clayey soils, and the contents of illite and chlorite are less influential when added to kaolinite based clayey soils. Moreover, 15 samples with different proportions of K+I+M+C were prepared and tested, and the proposed correlations were validated in light of the results obtained on these materials.
The seventh paper by Fan et al., investigates the addition of fine grained Zeolite on the compressibility and hydraulic conductivity of clayey soil treated with calcium bentonite and used as backfills for vertical cut off walls. Vertical cutoff walls, using backfill consisting of on-site sandy soil and Na-bentonite are widely used as engineering barriers for the purpose of achieving relatively low hydraulic conductivity and high contaminant sorption capacity. At some sites, locally available clayey soil, Ca-bentonite and natural zeolite may be considered as an alternate backfill. However, studies on the compressibility and hydraulic conductivity of zeolite-amended clayey soil/Ca-bentonite backfills for vertical cutoff walls are very limited. A series of one-dimensional consolidation tests is performed to evaluate the compressibility and hydraulic conductivity of fine-grained zeolite-amended clayey soil/Ca-bentonite backfills. Kaolin is used as the control clayey soil, and it is amended with various amounts of Ca-bentonite (5, 10, and 15%) and zeolite (2 - 40%) to prepare zeolite-amended kaolin-bentonite backfills. The results indicate that the addition of fine-grained zeolite has insignificant influence on the compressibility and hydraulic conductivity of clayey soil/Ca-bentonite and sandy soil/Na-bentonite backfills. The hydraulic conductivity of the zeolite-amended clayey soil/Ca-bentonite backfills is generally lower than the typical regulatory limit of 10-9 m/s. Two empirical methods, based on the Nagaraj’s generalized void ratio (e/eL) and Sivapullaiah et al.’s method are assessed to predict the hydraulic conductivity of the backfills. The proposed method based on the Sivapullaiah et al.’s method is shown to estimate the hydraulic conductivity for the fine-grained zeolite-amended clayey soil/Ca-bentonite backfills with reasonable accuracy.

The eighth paper by Cheng and Saiyouri is titled effect of long term aggressive environments on the porosity and permeability of granular materials reinforced by nano-silica and sodium silicate. Colloidal nanosilica is a kind of new chemical grout materials for filling small pores of fine-grained soil. Compared to traditional sodium silicate material, the advantages and disadvantages of colloidal nanosilica are studied under laboratory conditions for pure gels and sand-gel mixtures for long-term volume stability. Samples of Fontainebleau sand injected by nanosilica and sodium silicate were conserved in dry air, water, salt solution and acid solution for 8 different time periods. The results show that pure gel of nanosilica is much more stable than pure gel of silicate sodium in all environments studied; from results of porosity, nanosilica does not has manifest advantages compared with sodium silicate; from results of permeability, nanosilica sand has more stable capacity of water-blocking in all environments.

The ninth paper by Deka et al. is on strength of lime treated flyash using bentonite. The class “F” type Fly ash is non-cohesive and is normally strengthened or reinforced when used in structural fills. This paper deals with strength increase in unconfined compressive tests by pozzolanic reactions with lime and also bentonite.

The tenth paper is by Wang et al. on soil deformation induced by underground tunnel construction. Development and utilization of underground railways can effectively ease the problem of urban traffic congestion. However, surrounding soil disturbance during tunnel excavation is likely to cause serious accidents. Thus, analyzing soil deformation during tunnel excavation is important. Through numerical simulation, this paper analyzes the influence of the step distance of a single-bore tunnel on the disturbance of the surrounding soil. Based on research on a single-bore tunnel, this paper further examines the effects of various spacing, locations, and excavation methods on the deformation of surrounding soils during parallel tunnel excavation. The results show that longer excavation steps lead to more intense disturbance to the surrounding soils. The most intense disturbance occurs at the ends of the tunnel. During new tunnel excavation, the tunnel crossing angle has stronger influence than the tunnel spacing on the original tunnel. Among the four excavation methods, single-bore advanced through is the most secure, whereas simultaneous excavation from opposite directions can cause the most intense disturbance to the surrounding soils. In practical operations, corresponding excavation methods can be employed according to specific conditions. Moreover, in-situ monitoring at key positions should be enhanced to avoid accidents.

The eleventh paper by Zhou et al. is on full scale field tests on soil arching triggered during the construction of shallowly buried HDPE pipes. Soil arching significantly affects earth pressures around and above high-density polyethylene (HDPE) pipes in the construction phase. However, few studies have systematically addressed the change of soil arching with respect to soil cover thickness during the installation of HDPE pipes. This paper presents full-scale field investigations on the soil arching above and around three HDPE pipes buried shallowly in trenches. The results demonstrate that the soil arching developed in the backfill above the pipes is getting significant with increasing soil cover thickness. At a given soil cover thickness, more notable soil arching is found at a position closer to the pipe crown. The measured earth pressures acting on the pipe crown are compared with those estimated by the Marston load theory. It is found that the crown earth pressures estimated by the Marston’s trench equation and embankment equation are 8% to 32% and 2% to 14% respectively higher than those obtained.
from the field tests. The results suggest that a threshold trench width is likely to exist when the Marston load theory is used for calculating the earth pressures on the top of HDPE pipes buried in the trench.

The twelfth paper is on a pollutant migration model considering solute decay in layered soil by Yu and Cai. Organic pollutant solute undergoes significant decay during the migration process in clay liner systems and foundation clay. Liner and foundation soil have layered properties. A one-dimensional computational model is established to calculate pollutant migration by considering the decay in layered soil medium. The separation of variable method is used to obtain the analytical solution. To verify the capability of the developed method, a typical example is illustrated by applying this model. The calculated results are compared with the results obtained from the GAEA Pollute v7. Consistent results demonstrate the reliability and validity of the proposed migration model, which can be a promising tool for landfill liner design when considering the organic pollutant decay.

The thirteenth paper is on effect of cyclic strain history on shear modulus of dry sand using resonant column tests by Jyant Kumar and Achu Catherine Cherian. A number of resonant column tests were performed on dry sand specimens to examine the effect of cyclic shear strain history, by including both increasing and decreasing strain paths, on the shear modulus \((G)\) for different relative densities \((Dr)\) and confining pressures \((\sigma_t)\). The specimen was subjected to a series of cycles of increasing and decreasing shear strain paths approximately in a range of 0.001-0.1%. For a particular cycle, with a given strain amplitude, the shear modulus during the increasing strain path becomes always greater than that during the decreasing strain path. For a given cycle, irrespective of relative density of sand, the difference between the values of \(G\) associated with the increasing and decreasing strain paths becomes always the maximum corresponding to a certain shear strain level. The maximum reduction in the shear modulus, due to the cyclic variation of the shear strain, was noted to be around one fourth of the maximum shear modulus \((G_0)\). This reduction in the shear modulus on account of the cyclic variation of shear strain increases generally with decreases in the values of both relative density and confining pressure. The study will be useful to examine the response of sand media subjected to earthquake excitation.

Bhattacharya and Kumar are the authors of the fourteenth paper on vertical uplift capacity of circular anchor plates. Experimental and numerical investigations have been carried out to determine the vertical uplift resistance of circular anchor plates embedded in cohesionless soil media. Experimental studies are performed on model circular anchor plates placed at different depths in loose to medium dry sand deposit for two different relative densities, namely, 25% and 65%, respectively. The numerical work has been done by using an axisymmetric lower bound limit analysis in conjunction with finite elements and linear programming to compute the uplift resistance offered by circular anchor plates embedded horizontally in sand. In the case of numerical studies, the internal frictional angle of sand was varied from 20° to 45°. Both experimental and numerical studies clearly reveal that the uplift resistance of the circular plate increases considerably with increases in embedment ratio \((H/D)\), and soil frictional angle \((\phi)\). The deformation of the anchor plate, corresponding to the failure load, increases with an increase in the values of \(H/D\) and relative density of sand. The values of the failure loads obtained from the computational analysis match well with the present experimental results as well with the available data from literature.

In this fifteenth paper by Benson Hsiung and Sy-Dan Dao, a simple method for predicting movements, especially the ground surface settlements, caused by deep excavations in sands is presented. The case history of deep excavation in thick layers of sand is adopted from Kaohsiung, Taiwan as the basis for numerical analyses. In order to improve the inconsistence in prediction of ground surface settlements induced by the deep excavation, the analysis using the simple constitutive model but with additional two factors, \(\alpha\) and \(\beta\) is applied. The factor \(\alpha\) defines the width of primary strain zone behind the retaining wall, and \(\beta\) indicates the difference of soil stiffness in two zones of the primary strain zone and small strain zone. It is concluded that changing \(\alpha\) seems not to induce significant change, and values of \(\beta\) from 3 to 5 shall be taken once such approach intends to be adopted for predicting ground surface settlements caused by deep excavations in sands.

The editors are grateful to the authors and reviewers and are very pleased with the significant contributions made by them in making this Issue feasible to our SE Asian Geotechnical Community and others.

Zhen-Yu Yin
Jian-Hua Yin
ACKNOWLEDGEMENT

This September 2015 Issue is edited by Profs. Zhen-Yu Yin and Jian-Hua Yin. They are to be congratulated for acquiring fifteen excellent papers, which covers a wide range of topics which will be of great value to researchers and practitioners. Details of the contents are in the Preface as compiled by the editors. They cover strain rate effects and stress relaxation with a new Stress strain Model as based on CSSM; the engineering behaviour of Shanghai soft clay is statistically analyzed; the dynamic behavior of frozen soils is studied using dynamic uniaxial/triaxial test, resonant column test, wave velocity test and the SHPB test. The addition of fine grained Zeolite on the compressibility and hydraulic conductivity of clayey soil treated with calcium bentonite and used as backfills for vertical cut off walls is also presented. Additionally, effect of long term aggressive environments on the porosity and permeability of granular materials reinforced by nano-silica and sodium silicate is also presented. The strength of lime treated flyash using bentonite is also studied in detail; the class “F” type Fly ash is non-cohesive and is normally strengthened or reinforced when used in structural fills. Soil deformation induced by underground tunnel construction is of importance. Among the four excavation methods, single-bore advanced through is the most secure, whereas simultaneous excavation from opposite directions can cause the most intense disturbance to the surrounding soils. In practical operations, corresponding excavation methods can be employed according to specific conditions. Moreover, in-situ monitoring at key positions should be enhanced to avoid accidents.

Full scale field tests on soil arching triggered during the construction of shallow buried HDPE pipes is also presented. Soil arching significantly affects earth pressures around and above high-density polyethylene (HDPE) pipes in the construction phase. The paper here presents full-scale field investigations on the soil arching above and around three HDPE pipes buried shallowly in trenches.

Organic pollutant solute undergoes significant decay during the migration process in clay liner systems and foundation clay. Liner and foundation soil have layered properties. A one-dimensional computational model is established to calculate pollutant migration by considering the decay in layered soil medium. The thirteenth paper is on effect of cyclic strain history on shear modulus of dry sand using resonant column tests by Jyant Kumar and Achu Catherine Cherian. A number of resonant column tests were performed on dry sand specimens to examine the effect of cyclic shear strain history, by including both increasing and decreasing strain paths, on the shear modulus (G) for different relative densities (Dr) and confining pressures(σ_3). The study will be useful to examine the response of sand media subjected to earthquake excitation.

Bhattacharya and Kumar are the authors of the fourteenth paper on vertical uplift capacity of circular anchor plates. Experimental and numerical investigations have been carried out to determine the vertical uplift resistance of circular anchor plates embedded in cohesionless soil media. The numerical work has been done by using an axisymmetric lower bound limit analysis in conjunction with finite elements and linear programming to compute the uplift resistance offered by circular anchor plates embedded horizontally in sand. Finally, Benson Hsiung and Sy-Dan Dao presented a simple method for predicting movements, especially the ground surface settlements, caused by deep excavations in sands. The case history of deep excavation in thick layers of sand is adopted from Kaohsiung, Taiwan.

No doubt, this Issue will be most useful to our Profession and all those who are engaged in Pile Foundation Research and Practice. Sincere thanks to all who have contributed to the success of this issue of our journal under the able leadership of Profs. Zhen-Yu Yin and Jian-Hua Yin

K. Y. Yong
N. Phienwej
T. A. Ooi
A. S. Balasubramaniam
TABLE OF CONTENTS

List of Papers Page

Overview and Interpretation of Rate-Dependency of the Behaviour of Soft Clays. 01
By Z. X. Wu, Q. Y. Zhu, Z. Y. Yin

Overview and Interpretation of Stress-Relaxation of Soft Clay. 12
By L. Ye, Q.Y. Zhu, J.X. Liu, P.P. Sun and Z.Y. Yin

Modeling Undrained Shear Behavior of Reconstituted Clays considering the Effects of Initial Water Contents 24
By X. Bian, L. L. Zeng, J. W. Ding and Z. S. Hong

Statistical Analysis on Physical Properties of Shanghai Soft Clay 31
By Y. M. Lu, Y. F. Jin, S. L. Shen, F. Yu and J. Zhang

A Review of the Dynamic Behaviour of Frozen Soils 37
By S. Wang, J. Qi and Z. Yin

Influence of Mineral Constituents on One-dimensional Compression Behaviour of Clayey Soils 46
By L. Ye, Y.F. Jin, Q.Y. Zhu and P.P. Sun

Effects of Addition of Fine-grained Zeolite on the Compressibility and Hydraulic Conductivity of Clayey Soil/Calcium-Bentonite Backfills for Vertical Cutoff Walls 54
By R.D. Fan, Y.J. Du and S.Y. Liu

Effect of Long-term Aggressive Environments on the Porosity and Permeability of Granular Materials Reinforced by Nanosilica and Sodium Silicate. 62
By M. Cheng and N. Saiyouri

Strength of Lime-Treated Fly Ash Using Bentonite 73
By S. Deka, S.K. Dash and S Sreedeep

Soil Deformation Induced by Underground Tunnel Construction 82
By L. Wang, R. Liu and G. G. Wang

Full-Scale Field Tests on Soil Arching Triggered during Construction of Shallowly Buried HDPE Pipes 89
By M. Zhou, Y. J. Du and F. Wang

A Pollutant Migration Model Considering Solute Decay in Layered Soil 94
By C. Yu and X. Q. Cai

Effect of Cyclic Strain History on Shear Modulus of Dry Sand using Resonant Column Tests 99
By J. Kumar and A. C. Cherian
Vertical Uplift Capacity of Circular Anchor Plates
By P. Bhattacharya and J. Kumar

Prediction of Ground Surface Settlements Caused by Deep Excavations in Sands By B. C. B. Hsiung and S. D. Dao

SPECIAL FEATURE STORY ON “Soil Mechanics at Emmanuel College - Elegant, Rigorous and Relevant ”
By John Burland

SPECIAL FEATURE STORY ON “Ground Improvement Methods for Port Infrastructure Expansion”
By B. Indraratna, Heitor, A and Rujikiatkamjorn, C.
Inundation Caused by Sea-Level Rise Combined with Land Subsidence
(After Yasuhara, Murakami and Mimura 2015)

Vacuum De-Watering and Dynamic Compaction
(After Liang, Xu and Edil 2015)

Reclamation at Rio de Janeiro State, Brazil
(After Barbosa, Barboza de Oliveira and Marques 2015)
December-2015 Issue: Problematic Soils including Contaminated Soils
Edited By Prof. Jay N. Meegoda and Prof. Liming Hu

Prof. Jay N. Meegoda

Dr. Meegoda is the director of Geotechnical Program and a Professor of Civil and Environmental Engineering at New Jersey Institute of Technology. He received his BS (Honors) from University of Sri Lanka and his M.S. and his Ph.D. from the University of California at Davis. He has been working as educator, consultant and researcher in engineering for over 35 years. He utilizes scientific concepts and engineering technologies in his research to provide solutions to real world problems. Dr. Meegoda has worked with state and local governments, and foreign governments to provide technical input for broad range of problems.

Dr. Meegoda has worked on three major research areas. His primary research is in Mechanics of Geo-Environmental Engineering, which includes Engineering Properties of Contaminated Soils, Centrifugal Modeling of Contaminant Movement in Soils and Remediation of Contaminated Soils, Micro-mechanics of Soils, Reuse of Contaminated Soils, and Ultrasound. His second major research area is sustainable use of waste, which is still under the broad area of Geo-environmental Engineering. It includes Modeling of Bio-reactor Landfill performance, Sustainable Waste Management and Construction use of waste. Recently Dr. Meegoda initiated his third research area, the sustainable infrastructure initiative, which includes Performance of pipes and development of next generation of pipes, Management of underground infrastructure and Pavement texture and snow/ice management to limit accidents. He has offered numerous short courses worldwide, and teaches graduate and undergraduate courses at New Jersey Institute of Technology on Geotechnical and Geo-environmental Engineering.

Dr. Meegoda as PI has successfully concluded several multidisciplinary research projects worth over $7M from agencies such as NSF, USEPA, US Army, FHWA, NJDOT and NJDEP that provided broader impact to the society. Some of those technologies are now extensively used while others are to be commercialized. He has published over 150 papers. He has one patent and applied for one provisional patent. He received the research implementation award from the New Jersey Department of Transportation in 2011 for his Culvert Information Management Research, the best theoretical paper award from the Environmental and Water Resources Institute of ASCE in May 2012 for his research collaboration with China and the best practice paper award from the Environmental and Water Resources Institute of ASCE in May 2001 for the paper describing the results of one USEPA SITE demonstration project.
Dr. Meegoda currently serves Associate Editor of the ASCE Journal of Hazardous, Toxic, and Radioactive Waste Management, Editorial Board Member ASTM Geotechnical Testing Journal, Journal of Traffic and Transportation Engineering, Springer Journal on Waste and Biomass Valorization and The Scientific World Journal, Guest editor, Journal of Hazardous Materials, special issue on Contaminated Dredged Sediments and Associate Editor of the 4th International Symposium on Environmental Geotechnology and Global Sustainable Development. He is a guest/research/visiting professor/scholar of six different universities. He has research collaborations spanning all six continents. He was invited to deliver keynote lectures and invited lectures at numerous events around the world. At NJIT, he was instrumental in setting up the NJIT chapter of Engineers without Borders and is currently serving as the faculty advisor.

Prof. Liming Hu

Dr. Hu is an Associate Professor of Geo-environmental Engineering, and the Deputy Director of Institute of Geotechnical Engineering of Tsinghua University in China. He is also the senior Research Scientist at State Key Laboratory of Hydro-Science and Engineering (SKLHSE), and the director of the Geo-environmental Research Centre. He obtained double Bachelors in both Hydraulic Engineering and Environmental Engineering from Tsinghua University in 1995, and MEng and Ph.D. in Geotechnical Engineering from the same university in 2000. Then he worked as post-doctoral Research Associate at the Department of Civil Engineering of Hong Kong University of Science and Technology (HKUST) from 2000 to 2002. Since April 2002, Dr. Hu joined in Tsinghua University. He has supervised 15 Master students and 6 Ph.D. students.

Dr. Hu’s research interests focuses on contaminant transport, soil/groundwater remediation, valorization of solid waste, and landfill design in field of Geo-environmental Engineering, as well as soft ground improvement and soil-structure interaction in field of Geotechnical Engineering. He has more than one hundred publications in peer-reviewed journals, and owns 12 invention patents and 3 software packages. Dr. Hu obtained numerous notable honors and awards due to his outstanding research achievements, such as 2013 First-Class State Award for Inventions by Chinese Central Government, 2013 Outstanding Young Scholar at Tsinghua University, 2013 Scientific Research Award from Hubei Province, 2012 Best Theoretical-Oriented Paper by ASCE Environment and Water Resources Institute, and 2012 Outstanding Young Scholar by Chinese Society for Rock Mechanics and Engineering, 2007 New Century Excellent Talents in Chinese Universities by Ministry of Education, 2005 New Star in Science and Technology by Beijing Municipal Government, and so on.

Now Dr. Hu serves as Chair of Committee for Chinese Young Geotechnical Engineers; Chair of Technical Committee on Soil Contamination and Remediation, and Core Member of the Institution of Geo-Environmental Engineering under Chinese Society for Rock Mechanics and Engineering; and Vice-Chairman of Committee for Geo-Environmental Engineering under Chinese Institution of Soil Mechanics
and Geotechnical Engineering. He is also the life member of Southeast Asian Geotechnical Society (SEAGS), member of American Society of Civil Engineers (ASCE), Member of International Society of Soil Mechanics and Geotechnical Engineering (ISSMGE), and Member of International Society for Rock Mechanics (ISRM), Member of American Chemistry Society (ACS), etc. Dr. Hu also serves as a member of TC215 (Environmental Geotechnics) of ISSMGE.
L. John Endicott

As a professional engineer and adjunct professor, Dr. John Endicott is a recognized thought leader in geotechnics and tunneling.

Inspired by the research work of a professor, he converted from studying mechanical engineering to soils. Later, John received his Ph.D. and master’s degree from Cambridge University in the United Kingdom.

He began working with AECOM (then Maunsell) in 1970 and moved to Hong Kong in 1975 to aid in the development of an extensive global network throughout the AECOM geotechnical and tunneling leaders in other geographies. In 1990, John was elected chief executive officer for the geotechnical and tunneling business in Hong Kong, serving 10 years and then served as chairman until 2009.

With more than 41 years of experience, he has worked on numerous iconic projects such as Hong Kong’s Chek Lap Kok International Airport platform and the Lai Chi Kok Transfer Scheme project. He has been involved with more than 100 underground railway stations and a variety of tunnel assignments. As a guru in the industry, he has been recognized globally by several industry organizations and academia such as the 1971 Cooling Prize from United Kingdom’s Institution of Civil Engineers and Adjunct Professor at Hong Kong’s University of Science and Technology.

As an iconic symbol and pillar of excellence within the geotechnical group, he persistently seeks out opportunities to promote and nurture collaboration. It is this passion that has defined him in the field as a global leader.

He was recently appointed as technical expert for the Hong Kong government among other organizations. John is a member of the Academy of Experts – U.K., Fellow of the Institution of Civil Engineers, founding member of the Hong Kong Institution of Engineers’ geotechnical division, and has served as adjunct professor at the Hong Kong University of Science and Technology since 2003. He is an avid and dedicated mentor and sought out by many young engineers for his insight, advice and guidance.
Professor Michele Jamiolkowski has been the Emeritus Professor of C.E., Technical University of Torino since 2008. In addition, he has also been the Founder and Chairman of the Engineering Consultant Company, Studio Geotecnico Italiano; Foreign Member of the Polish Academy of Science; Member of the Lagrangian Academy of Science, Torino; and Editor in Chief of the International Journal Geomechanics and Geoengineering.

In addition to his outstanding academic record, Professor Jamiolkowski has also been involving in many world famous mega-projects such as Geotechnical Consultant for the Suspension Bridge over Messina Straits, Geotechnical Consultant for the Engineering Company Technital designer of the MOSE Project in Venice for Safeguarding Venice from high tides etc. He was also the President of the International Society for Soil Mechanics and Geotechnical Engineering between 1994 and 1997, and also the Chairman of the International Committee for Safeguard of the Leaning Tower of Pisa between 1999 and 2000. Currently, he is still serving as the Member of the International Advisory Group of the European Bank for Reconstruction and Development for the design and construction of the New Safe Confinement of the reactor in Chernobyl Nuclear Power Plant; the Chairman of the International Board Expert for Development of the Second World Largest Copper Mine Tailings Depository Zelazny Most in Poland; the Geotechnical Consultant for the Venice Defence System against Water; the Chairman of the Technical Committee for Safeguard of Rome Monuments During Construction of the New Subway Line C Underpassing Historical Town Centre; and the Foreign Associate US National Academy of Engineering.

For his outstanding achievement, Prof. Jamiolkowski is the recipient of numerous awards or honors, such as K. Terzaghi and R.B. Peck Awards from the ASCE; E. De Beer Awards from the Belgian Geotechnical Society; Honorary International Member of the Japanese Geotechnical Society; Doctor Honoris Causa: University of Bucharest, University of Ghent, SGGW, Life University (Warsaw); Recipient of the Italian Prize “Savior of the Art”; Honorable International Member of the Japanese Geotechnical Society since 1998; Honorary Professor Academia Sinica of Guangzhou, China; and Commendatore of the Italian Republic bestowed by the President of Italy.

Other distinctions of Professor Jamiolkowski include 1985 Theme Lecturer at the XI International

Professor Jamiolkowski is the author and co-author of more than 250 publications, journal with referee & international conference.

Professor Carlo Viggiani

Professor Carlo Viggiani graduated in Civil Engineering in 1960 at the University of Napoli; he got his PhD in Geotechnical Engineering in Napoli in 1969. He has been teaching in the Universities of Pavia, Cosenza, Potenza; from 1974 to 2011 he has been full Professor of Foundation Engineering at the University of Napoli Federico II. He is at present Emeritus Professor.

Professor Carlo Viggiani has lectured in a number of Universities in Europe, North and South America, Australia and Asia. He has been State of the Art Reporter at the ICSMFE in New Delhi, 1994 (Mitigation of Natural Hazards: Landslides and Subsidence) and at the ICSMGE in Osaka, 2005 (Pile foundations).

He has been Editor of the Italian Geotechnical Journal; component of the Editorial Board of the Journal of Numerical and Analytical Methods in Geomechanics; at present he is editor of the series “Argomenti di Geotecnica” (Issues in Geotechnics) of the publisher Hevelius.

Professor Carlo Viggiani is Author or Co-Author of 4 books and more than 200 technical papers; some of his papers have been awarded by journals as Géotechnique, Soils and Foundations, Case Histories of Geotechnical Engineering. His research topics include Theory of Consolidation, Soil-Structure Interaction for Shallow and Deep Foundations, Applications of Geotechnics to the Conservation of Monuments and Historic Sites. He is Chairman of TC19 (later TC301) (Preservation of Monuments and Historic Sites) of the ISSMGE, and has been involved in the conservation of a number of monuments affected by geotechnical problems.
From 1990 to 2002 he has been member of the International Committee for the Safeguard of the Leaning Tower of Pisa, and is presently member of the Monitoring and Surveillance Committee of the Tower. In fact, his interest to the Tower dates back to 1963.

Professor Carlo Viggiani has been involved, as geotechnical consultant, in the design and construction of a number of civil engineering structures; among them earth dams, civil and industrial buildings, bridges, tunnels and underground constructions, stabilisation of landslides. He acted as consultant for Italian Railways, Underground Transportation Systems in Rome, Napoli, Torino, Bologna, Firenze. He participated in the design of the foundations of the suspension bridge over the Messina Straits.
Welcome to Geotechnical Engineering Journal of the Southeast Asian Geotechnical Society (SEAGS) and the Association of Geotechnical Societies in Southeast Asia (AGSSEA). It is our great pleasure to serve as the guest editors for the last issue of 2015. It is also a special issue dedicated to Problematic Soils including Contaminated Soils. This December 2015 issue of the journal contains fifteen interesting research papers and the details are described below.

First six papers are on contaminated soils or groundwater and their remediation. Next two papers are on electro-osmosis drainage. Next three are on ground improvement. Last four are on interesting or emerging topics such as education, impact of rise in sea level, numerical analysis and theoretical analysis.

We specifically requested Professor Chrysochoou to describe Geochemistry in Geotechnical Engineering Problems and set the tone for the issue. In this paper Professor Chrysochoou uses Ettringite, which is a problematic mineral found in soils as well as concrete, as case study to elaborate Geochemistry and how that is related to Geotechnical Engineering.

In the second paper Professor Meegoda and his team describes the Engineering Properties of Chromium Contaminated Soils. The chromite ore processing activities have over 2 million tons of processed chromium ore residue in Hudson County, New Jersey. This is a hazardous waste needing proper disposal. Professor Meegoda and his team explored the feasibility of using as construction material or to be used as brownfield type remediation.

Dr. Nithya and his team explored heavy metal sorption characteristics of two geo-materials in the third paper. The mobility of heavy metals into the environment as a result of mining, industrial and agricultural activities such as that described in the second paper is of major concern and engineers are exploring ways to absorb those heavy metals. Dr. Nithya and his team performed batch sorption experiments to evaluate suitability of two soils found in India as sorbents for heavy metals.

In the fourth paper Professor Mulligan and her student explored reduction of Chromium in water and soil using a biosurfactant “Rhamnolipid.” Rhamnolipid is readily biodegradable biosurfactant with a very low environmental impact. Professor Mulligan and her student performed batch experiments to evaluate the feasibility of using Rhamnolipid for the removal and reduction of hexavalent chromium from contaminated soil and water.

Professor Barbosa and her team describe details of a reclamation project of a brownfield site containing 1.2 million cubic meters of mineral waste pile inside a 260,000 m² liquid waste pond in Rio de Janeiro State, Brazil, the fifth paper of this issue. Professor Barbosa and her team proposed technical solution that included the complete draining of the liquid pond, accompanied by on site treatment, a hydraulic barrier of pump & treat wells and the construction of an engineered waste containment facility using the mineral solid waste as compacted earth fill material combined with geosynthetics.

A review of acidic groundwater remediation in the Shoalhaven floodplain in Australia, is given by Professor Indraratna and his team in the sixth paper. Acidic groundwater generated from acid sulfate soils create
unfavorable environmental conditions. Professor Indraratna and his team installed a pilot-scale permeable reactive barrier showing that it is a promising technology for long-term remediation acidic groundwater.

Electro-osmosis is an effective technique for soft ground improvement. However with the continuous application of electrical energy the effectiveness of electro-osmosis decreases with increase in soil resistance. The intermittent application of the current is one way to overcome this problem. Hence Professor Hu and his team describe an experimental and a numerical study of electro-osmosis on kaolinite under intermittent current in the seventh paper.

A new type of electro-kinetic geo-synthetics (EKG) electrode to avoid the electrode corrosion and provide an effective drainage channel was developed for electro-osmosis drainage, and its performance was evaluated by Professor Shen and his coworker in the eighth paper.

The title of the ninth paper is innovative soft soil improvement method through intelligent use of vacuum dewatering and dynamic compaction. This research was performed by Professor Liang and his team.

Professor Shivashankar and his team provide the tenth paper entitled “Some Studies on Engineering Properties, Problems, Stabilization and Ground Improvement of Lithomargic Clays.” They performed laboratory studies to determine engineering and strength properties of these lithomargic clays and stabilized soils. Then they reported ways to improve sites containing Lithomargic Clays.

The eleventh paper describes laboratory investigation of stone column reinforcement of a soft South African clay by Professor Kalumba and his coworker.

Professor Bouassida and his team describe the results of a numerical modelling study of Tunis soft clay in the twelfth paper.

A framework for the de-structuring of clays during compression, is the title of thirteenth paper and it is a theoretical study performed by Professor Horpibulsuk and his colleagues.

In the fourteenth paper Professor Yasuhara and his colleagues describe impact of inundation caused by sea-level rise combined with land subsidence, a modern day problem.

Last but not least is the fifteenth paper by Professor Scharle and his colleague. This is an invited paper on challenges of educating our younger generation in Geotechnical Engineering.

The guest editors are grateful to the authors and reviewers for their contributions. We are very pleased with the significant contributions made by authors in making this Issue feasible to our SE Asian Geotechnical Community and others.

Jay N. Meegoda
Liming Hu
ACKNOWLEDGEMENT

The December 2015 Issue of the Journal on problematic soils on problematic and contaminated soils is edited by Prof. Jay Meegoda and Prof. Liming Hu. They did an excellent job within a short time and also forwarded all the completed documents well in time for the Journal Production team under the Leadership of DR. Ooi at IEM, Malaysia.

There are 15 papers in this Issue and a Feature story by Dr. John Endicott on Challenges in going underground in transportation and other utilities.

The guest editors have adequately covered the important aspects of the papers: First six papers are on contaminated soils or groundwater and their remediation. Next two papers are on electro-osmosis drainage. Next three are on ground improvement. Last four are on interesting or emerging topics such as education, impact of rise in sea level, numerical analysis and theoretical analysis. It is rewarding to note the authors of the papers cover all continents. It is a clear indication of the International nature of the Journal.

There were numerous Guest editors from 2011 to 2015; each and every one of them brought innovation and scholarly contribution both in research and practice. The journal continues to have page lengths suitable for the authors to comprehensively present their contributions. As a cost cutting measure the hard copy of the journal is only produced after all the soft copies are produced and this is a bound volume made available to all in the middle of the subsequent year. The soft copies are released spot on time in March, June, September and December each year. All articles are reviewed by more than two reviewers; Prof. Jay Meegoda and Prof. Liming Hu used an excellent set of reviewers.

The Issues in 2016 are devoted to AGSSEA country contributions and will be released by Taiwan Geotechnical society editors in March 2016, followed by the editors in Singapore, Hong Kong and Malaysia for the June, September and December Issues respectively. This will be followed by the Anniversary Issues in 2017. It is anticipated that the journal will also have a higher level of standard from the 51st year of the formation of SEAGS in 1967.

It is a genuine pleasure to have the excellent contributions in this December 2015 Issue and to record our vote of thanks to the Guest Editors Prof. Jay Meegoda and Prof. Liming Hu, the authors of the articles, the reviewers and all those who have contributed to the success in this Issues as well as the previous such Issues from 2011. It is important to thank Prof. San Shyan Lin for his varied contribution to SEAGS-AGSSEA in addition to his duties in the editorial team as a most valued member.

No doubt the contribution of the articles in Issue and the Feature story will further add prestige to the success story of the journal.

K. Y. Yong
N. Phienwej
T. A. Ooi
A. S. Balasubramaniam
GEOTECHNICAL ENGINEERING

DECEMBER 2015: SPECIAL ISSUE ON PROBLEMATIC SOILS INCLUDING CONTAMINATED SOILS

Editors: Prof. Jay N. Meegoda and Prof. Liming Hu

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>List of Papers</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geochemistry in Geotechnical Engineering Problems: Ettringite as Case Study</td>
<td></td>
</tr>
<tr>
<td>By M. Chrysochoou</td>
<td></td>
</tr>
<tr>
<td>Engineering Properties of Chromium Contaminated Soils</td>
<td></td>
</tr>
<tr>
<td>By Wiwat Kamolpornwijit, Jay N. Meegoda, Janitha H. Batagoda</td>
<td></td>
</tr>
<tr>
<td>Study on factors affecting heavy metal sorption characteristics of two geomaterials</td>
<td></td>
</tr>
<tr>
<td>By K.M.Nithya, D.N.Arnepalli and S.R.Gandhi</td>
<td></td>
</tr>
<tr>
<td>Reduction of Chromium in Water and Soil Using a Rhamnolipid Biosurfactant</td>
<td></td>
</tr>
<tr>
<td>By I. Ara and C.N. Mulligan</td>
<td></td>
</tr>
<tr>
<td>Reclamation project of a Brownfield site at Rio de Janeiro State, Brazil</td>
<td></td>
</tr>
<tr>
<td>By M.C. Barbosa, A.R.M. Barboza de Oliveira and M.E.S. Marques</td>
<td></td>
</tr>
<tr>
<td>A Review of Acidic Groundwater Remediation in the Shoalhaven Floodplain in Australia</td>
<td></td>
</tr>
<tr>
<td>By Buddhima Indraratna, Udeshini Pathirage and Laura Banasiak</td>
<td></td>
</tr>
<tr>
<td>Experimental and numerical study of electro-osmosis on kaolinite under intermittent current</td>
<td></td>
</tr>
<tr>
<td>By Liming Hu, Hui Wu, Jay N. Meegoda, and Qingbo Wen</td>
<td></td>
</tr>
<tr>
<td>Electro-osmosis drainage effect of a new type of EKG electrode</td>
<td></td>
</tr>
<tr>
<td>By Yang Shen and Yande Li</td>
<td></td>
</tr>
<tr>
<td>Innovative Soft Soil Improvement Method through Intelligent Use of Vacuum De-Watering and Dynamic Compaction Techniques</td>
<td></td>
</tr>
<tr>
<td>By R. Liang, S. Xu and T. Edil</td>
<td></td>
</tr>
<tr>
<td>Some Studies on Engineering Properties, Problems, Stabilization and Ground Improvement of Lithomargic Clays</td>
<td></td>
</tr>
<tr>
<td>By R. Shivashankar, A. U. Ravi</td>
<td></td>
</tr>
<tr>
<td>Stone column reinforcement of a soft South African clay: A laboratory investigation</td>
<td></td>
</tr>
<tr>
<td>By L. Sobhee-Beetul and D. Kalumba</td>
<td></td>
</tr>
<tr>
<td>Numerical modelling of Tunis soft clay</td>
<td></td>
</tr>
<tr>
<td>By Mnaouar Klai, Mounir Bouassida and Seifeddine Tabchouche</td>
<td></td>
</tr>
</tbody>
</table>
A Framework for the Destructuring of Clays During Compression
By M. D. Liu, S. Horpibulsuk, and Y. J. Du

Inundation Caused by Sea-Level Rise Combined with Land Subsidence
By K. Yasuhara, S. Murakami and N. Mimura

Levels of what and how in the Education of Geo-engineering on Problematic Soils
By R. Ray, P. Scharle, R. Szepesházi

SPECIAL FEATURE STORY ON “Challenges in Going Underground in Big Cities”
By L. J. Endicott

HISTORIC NOTE:
Underexcavating the Tower of Pisa: Back to Future
By J. B. Burland, M. B. Jamrołkowski, and C. Viggiani