GENERALIZATION OF THREE-MODULI INCREMENTAL
NON-LINEAR CONSTITUTIVE MODELS FOR SOILS
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ABSTRACT

In this paper, two three-moduli incremental non-linear constitutive models are presented for triaxial

_ <tress condition. The method for the determination of three moduli (K, G,J) in one of the incremental non-linear

constitutive models using conventional triaxial test data is discussed. Mathematical functions are suggested for
best data fittings. The three-moduli models can consider shear-compression (or shear-dilation) by introducing
the coupling modutus J (or J). The three moduli X,GJ are determined using data from an isotropic
consolidation test and three CID triaxial shear tests. The computed results using the calibrated KG.J model are
compared with the measured test data from three drained triaxial shear tests in constant p” The main focus of
the paper is on (a) a new approach in the generalization of the two three-moduli models for triaxial stress
condition and (b) the interpretation of physical meanings of the two generalized models. The two new
generalized forms (models) are derived based on incremental isotropic hypoelasticity theory. Both the tensor
form and the matrix form of the two new generalized stress-strain relationships are presented. Physical
meanings of the generalized constitutive relationships are discussed with an especial attention to the items

associated with the coupling modulus J {or J).

INTRODUCTION

1t is commonly recognized that the constitutive model for the stress-strain-strength behavior of soils is
the key to meaningful and accurate prediction of the performance of geotechnical soil structures (Chen and
Mizuno, 1990; Yin, 1990; Chen, 1994). The research in constitutive modeling for soils has been a very active
area with a long history (Chen and Mizuno, 1990). The stress-strain behavior of soils under static loading is
non-linear, plastic, time-dependent. This paper will study mainly the non-linear and plastic stress-strain
behavior of sandy soils, the time-dependency (or strain-effects) of which may be ignored.

To simulate the non-linear and plastic behavior of soils, a number of elastic-plastic models (Chen and
Mizuno, 1990) have been proposed from Drucker’s stability postulate (Drucker, 1951), for example, Drucker
and Prager’s model (1952) and the Modified Cam-Clay model (Roscoe and Burland, 1968). As a different
approach, hypoelasticity (Truesdell, 1955) has been used to model the non-linear and plastic stress-strain
behavior of soils, One of the most popular hypoelastic models for soils is the two-moduli (using stress-
dependent E and v or E and K) incremental stress-strain model proposed by Duncan and Chang (1970). The
determination of the two moduli £ and vor E and X can be found in Duncan ef al. (1980) and Duncan (1981).
Domaschuck and Villiappan (1975) suggested a two-moduli model using stress-dependent shear modulus G and
bulk modulus X. One of the main limitations is that the two models cannot consider shear stress induced
compression/expansion and mean-stress induced shear strains, which are common for most soils subject to large
loading. Darve ef al. (1986) suggested models with more than three moduli. However, the determination of
those moduli requires special tests and is often difficult. To consider shear-dilation behavior of soils, Yin and
Yuan (1985) suggested a three-moduli model, But this model cannot consider mean-stress induced shear strain.
Yin et al, (1989, 1990) developed an improved version of Yin and Yuan’s model (1985) to consider both shear
stress induced volume strain and mean stress induced shear strain using moduli X;G,J. This three-moduli model
is only for triaxial stress states.

Darve (1990) considered the incremental type of constitutive relations is quite a.general type of
constitutive models including endochronic models. In fact, elastic-plastic models, such as Drucker and Prager’s
model and the Modified Cam-Clay model are of the incremental form. The non-linear models modified from
hypoelasticity are also of the incremental form. All these models are similar with the same incremental form but
different in details in establishing these models and probably different in some predicting features,
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Some people think the hypoelastic models are out of date. It is noted that Duncan and Chang’s two-
moduli model is implemented in a commetcial finite element program- SIGMA/W (Geo-Slope 1998) and is stil}
used by geotechnical engineers. Recently, Yang e al. (1998) used Duncan and Chang’s model in finite element
analysis of deep excavations. As long as the hypoelastic models are still used in geotechnical engineering
analyses, it is necessary to further improve these models, for example to overcome those limitations mentioned
early. There is a misunderstanding on hypoelastic models. Some people consider that hypoelastic models are
non-linear elastic models. Therefore, these models cannot be used to describe the irteversible or elastic-plastic
stress-strain behavior of soils, This opinion is incorrect. Based on the definition of hypoelasticity, infinitesimal
incremental strains are reversible only under loading of infinitesimal incremental stresses, The total strains may
be irreversible. However, the feature of irreversibility of hypoelasticity may not be suitable for describing the
irreversible stress-strain behavior of soils. Thus, it is common that different moduli are used for
unloading/reloading behavior of soils with a loading-unloading/reloading criterion. The practice of using
different moduli in loading and unloading/reloading is similar to that in elastic-plastic modeling. Truesdell
(1955) and Coon and Evans (1971) pointed out that the incremental form of hypoelasticity has no difference
from the form of incremental elastic-plastic models except for details of moduli or terms in the constitutive
matrixes,

With the background information above, this paper presents new development in modeling the stress-
strain behavior of soils using three moduli based on hypoelasticity with modification for unloading and

reloading. A different form using three moduli X,G,J based on the model proposed by Yin et al. (1989,
1990) is proposed. This paper suggests a new method for the determination of moduli K,G,J. Two new
generalized forms based on the two forms of the three-moduli models (using K,G.J ot X, G,J ) are derived for
a general stress state based on incremental isotropic hypoelasticity.

THREE MODULUS NON-LINEAR CONSTITUTIVE MODEL

Yin et al, (1989, 1990) suggested a three-moduli model in the form

1 1
de, =—dp'+—d
g P 7 q

Y

1 1
de, =—dp'+—de
€s 7 ip 3G q

where in triaxial stress condition, the volumetric strain &, =& +26;, the generalized shear strain

& =%(s;— &), effective mean stress p= %(a; +20-;), and the deviator stress g=o,—0;. Here,
compressive stresses and compressive strains are positive, In (1), X is the bulk modulus which represents the
volumetric stiffness of the soil with respect to the effective mean stress increment dp” and K shall be positive.
The G in Eq. (1) is the shear modulus which controls the shear strain with respect to dg. The G may be positive
for strain hardening and negative for strain softening. The J in (1) is the coupling modulus which accounts for
the volumetric strain produced by an increment dg and also the shear strain produced by an increment dp’.

The formulation in Bq. (1) assumes that the dp’-ds, coupling and the dyg -d, coupling are controlled by
the same J-modulus. Positive dilation, that is, expansion during shearing, is associated with J < 0, The
compression during shearing is associated to J> 0. If there is no dilation or no induced anisotropy, the coupling

modulus J=co,

The three moduli X,G,J are considered here for describing the stress-strain behavior of soils in loading
with non-linear and plastic deformation. For unloading and reloading, the same formulation as in Eq. (1) is
assumed, but with three different moduli denoted as K%, G*, /%,

Equation (1) can be inversed as follows:

dp' =Kds, - Jde, o
dg=-Jde, +3Gde,
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 where the moduli X,G,J arerelated to K,G,J in Eq. (1) and vice versa ag:

B J e 5 3KGJ

=K— G 2 ’
J?-3KG J?-3KG J*-3KG

)
X 72 Y12 FTr_T72
K=3K§6J Go3KG-T  3KG-J

3K J

1t is seen from Eq. (3) that if /=0 (no shear-dilation or shear-compression), then X = K,G =G,J=0. The
moduli X,G,J may be a non-linear function of stresses and strains. For unloading/reloading, we have similar
relationships between. K¢,G ¢,J¢ and K°,G*,J°,

Conventional triaxial tests can provide three independent curves regarding the stress-strain refationship
of soils, These three curves may be used for the calibration of the three moduli X,G,J, The method for the
determination of the three moduli are discussed below.

Modtflus .K: The data from one conventionalisotropic compression (consolidation) test may be used
for the determination of the bulk modulus X. Isotropic consolidation test data provide the relationship between

effective mean stress p and volumetric strain &, Fitting an appropriate mathematical function f; to these data
produces an equation:

£, =40 @

In isotropic consolidation test, the deviator stress g is zero, thus from the first equation in Eq. (1), we have:

O 1 C3) o
de, K dp dp

) Coupling Modulus J; In isotropically consolidated drained (CID) triaxial shear tests; two
independent relationships can be obtained, namely volumetric strain vs. deviator stress &,—q, that is,

&, = f2(g) and deviator stress vs. shear strain g — &, thatis, g = f3(s,). The first relationship can be used to
determine the coupling modulus J.

In a CID test, the confining stress ¢, is kept constant, the ratio n=dg/dp' =3.If we define the slope
J; as:

dg 1 1
Jymm e 6

From the first equation in Eq. (1), we have:

dsy _1dp

y _ldp 1
dg Kdg J M
Using Eq. (6) and noting dg/dp' =1=3, we have:

uSh
J=—f
K —J, ®)

InEq. (8), if Ji=oo, then J = -7k . If 7K ~J, =0, then J= w, that is, no shear-dilation or shear-compression,
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Shear Modulus G: The relationship of deviator stress vs. shear strain (g — &, ), that is, g = f3(&;) can
be used to determine the modutus G. The slope (3G;) of the curve g = f3(¢,) may be defined as:

G, -1dg _1dfs(e) )
3de, 3 ds

From the second equation in Eq. (1), we have

de; l1dp 1 (10)
dg J dg 3G

Using Egs. (9) and (10), the shear modulus G is

_ G J

= 11
3G, an

In (11), if J= oo, then G = G,. IfnJ-3G, =0, then G = o which means the soil is rigid against shearing
deformation. The determination of K, G®,J* using unloading and reloading data is similar to that for X,G,J.

CALIBRATION AND PREDICTION

A sand of fine to medium size was tested for model calibration and verification. The maximum particle
size of the sand was 0.8mm, minimum size was 0.06mm. Other physical parameters are dsp = 0.28mm,
deo/dyo = 2.13, the specific gravity G, = 2.68, e, = 042, eu, = 031, D, = 57% (medium dense), and
rq= 15.4kN/m’ (dry unit weight).

The measured data of effective mean stress and volumetric strain from an isotropic consolidation test
on the sand are shown in Fig. 1. The data are fitted by a hyperbolic function

gy =L (12)
€+ 6P

The fitted curve is shown in Fig. 1. From the curve fitting, the two constants in Eq. (12) are determined as
¢y = 6867kPa, and c,= 39.4. Differentiating Eq. (12) and using Eq. (5), the K is

ko lateapi,)’ _ (6867+394p)
o 6867

(13)

In Eq. (13), the effective mean stress p;, under isotropic loading condition is replaced by p' for any

monotonic loading. This replacement assumes that the bulk modulus X from isotropic compression tests is valid
for other stress paths in monotonic loading. The same assumption was used by Domaschuk and Villiappan
(1975).

Three drained CID tests were done with three confining pressures of cr; = 98kPa, 196kPa and 392kPa,

The measured relationships of &, vs. g and ¢ vs. & were normalized by making g as ¢'=q/(c3)", where

m = 0,85, determined by trial-error. The normalized data were shown in Figs, 2 and 3. The &, here is the
increase in volumetric strain after isotropic compression.
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Fig. 1 Measured Data and Fitted Curve of p’ vs £, in an Isotropic Consolidation Test

The following function provides a good curve fitting of the normalized data in Fig, 2.

* *
—e, 409 =)

6‘V *
q —C

(14)

In Eq. (14) the three constants ¢, ¢, and cs are determined by the best-fitting, It is found that ¢;= 0.0015(kPa)™
', ¢g=7.0(kPa)y™" and ¢;=10.0(kPa)™". It is seen from Eq. (14) that when ¢" = ¢,= 7.0(kPa)™, &,= 0. It is
noted that ¢' < ¢s= 10.0(kPa)™! for the sand. Other mathematical functions may be used to fit test data, The
slope J; defined in Eq. (6) can be obtained by differentiating Bq. (14) '
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Fig. 2 Measured Data and Fitted Curve of q/ (03’) vs g, in CID Tests (Yin et al., 1989)
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InEq. (15) when g - 2q'cs +c405 =0, =0, The corresponding q'is

g =cs—(c5)? —cq05 =4.523 (KPa)'™

A hyperbolic function is used to fit the normalized data in Fig. 3
fo—f 16)
¢ +Cr8,

By best curve fitting, the two constants in Eq. (16) are determined to be ¢6=0.001(kPa)™", ¢/=0.1 (kPa)™"'. The
fitted curve is shown in Fig. 3. According to Eq. (9), differentiating Eq. (16) leads to

1y

G, =L _\o5) ooty a7
CG .

1
f 3ds;, 3

Having known K, J; and G, the coupling modulus J and shear modulus G can be obtained using Egs.
(8)yand (11).

Normalizing g by (cr;)"’ reflects the curved strength envelope of the sand. From Eq. (16) the ultimate q

is equal to 1/cr=q (o3)" =quy for 5=, As suggested by Duncan and Chang (1970), the deviator stress, gy,
identified to be failure at a limited strain in order to best fit test data is g, = Rq,s, and

' ' R
qy =q; (3)" = Rgy Kow)" = Ry = (18)
7
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From Eq. (18), at failure

. c
a3 =g 9
R
The ratio R may be in the range 0.6 <R < 1. We know in CID tests ( 0"3 =constant), at failure
DL | (&1 tm 1 20
Pf—o'a‘*'j‘b‘—(RlIf) +39r (20

Figure 4 shows the fitted curve to a non-linear strength envelope for R = 0.95 and ¢; = 0.1(kPa)™". If the
strength envelope is a straight line, then m = 1, ’

Using the determined three moduli X,G.J, Eq. (1) can be used to simulate (predict) the stress-strain
curves of the sand under different monotonic loading. Isotropically consolidated and constant-p / triaxial shear
tests were done on the same sand. Here the measured data are used to check the validation of the KGJ model,
noting that the constant-p’ test data have not been used for the determination of the thres KGJ moduli. Fi igure 5
shows the measured and predicted curves of g vs & and & vs &. It is seen that, overall, the KGJ model gives a
teasonable prediction of the stress-strain responses of the sand. It is noted that for the test with p’=392 kPa, the
predicted values are slightly larger than the measured value. The reason is that the strength envelope of the sand
is normally not a straight line, but curved. In other words, the friction angle normally decreases with increasing

normal stress. The proposed KGJ model has tried to deal with the curved strength envelope, but may need
further refinement.

GENERALIZATION OF THE KGJ MODEL AND XGJ MODEL

The formulations in Egs. (1) and (2) are valid for triaxial stress state and need to generalized into a 3-D
stress state before. Therefore, the present generalization of the formulations in Eqs. (1) and (2) is of theoretical
and practical significance. This section discusses how to generalize Egs. (1) and (2) for a 3-D stress state based
on isotropic hypoelasticity. The general form of hypoelastic constitutive laws were proposed by Truesdell
(1955, 1965).  For time-independent materials, special forms of hypoelasticity were proposed by Rivlin and
Ericksen (1955), Truesdell (1965) and Coon and Evans (1971). Rivlin and Ericksen (1955) derived hypoelastic
relationships, by employing the Cayley-Hamilton Theorem, for incremental isotropic hypoelastic materials.
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Here two special forms are discussed (Coon and Evans 1971, Chen and Mizuno, 1990). The first form

dey = Cyy (O Yoy @1

where Cjyy is called tangential compliance tensor. Under the condition of incremental isotropy of material, Cyy
becomes:
! . ,
Cir(Opn) = 08y + a2 (S 8y + 8, 8y) + ayoy Sy + a8y +
! . ! , Vo Vo

+a5(8p Ty + 6y + 80y + 00y )+ A605C Ty + 78440 1Oy @2
L Vo o v v

+ag (Eikdjnranxl + é‘llo—jma'mk + 6/[(”1»10'»11 + 6][ Ui:zxamk) +ay00n +

e o o

+ aIOUU'O-kntO'mI +a 10 m T mi Ol + alzo-lmo'nu'o-kno'nl
In Eq. (22) ay, @, ... ay, are 12 material coefficients which may depend on invariants of the effective stress
tensor o",7 . The & in Eq. (22) is the Kronecker delta (5= 1 for i = j or &;= 0 for i),

The second special form of isotropic hypoelasticity can be written as:
doy = Dy (o )8y (23)

where Dy is called tangential stiftness tensor. The form of Dyy (using by, by, «., b1z instead of a , @3, ., G12)
is the same as Cyy as in Eq. (22). Equations (21), (22) and (23) are the basis of the generalization of the two
three-moduli models for triaxial stress state.
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1t is found that Egs. (1) or (2) has only three independent coefficients (moduli). While Eq. (21) with
Cyu in Eq. (22) or equation Eq. (23) has 12 independent coefficients. Simplification and assumptions must be
made in order to generalize Eqs. (1) or (2) for a 3-D stress state. The principle of the generalization is:

(a)  the generalized form can be reduced to (1) or (2) for a triaxial stress state and
(b) the coefficients (moduli) in the generalized form can be uniquely determined using known moduli
K,G,Jor 1?,5,].

Based on _Eg. {1): Using this principle, the coefficients s, s, .., a1, are assumed to be zero.
Otherwise, they can not be uniquely determined. Thus, Eq. (22) is reduced as:

Cyr (o) =18y Sy + a5 (548 5 +6 5,6+ ayoydy + 0451;0';¢/ (24)
Using Eq. (24), Eq. (21) can be written as, noting a';j = O"j, ydey =de
dsy = ay8ydoy +2a,doy + ayo,doy, +adyoydoy 25

If two subscript indexes are the same, summation is implied, for example dey, =de); +deyy +dey; . The

{riaxial stress states are (a) all shear stresses and shear strains are zero and (b) the minor and middle principle
stresses and strains are equal, that is,

oy =0,doy =0 ifi#j
gy =0,dey =0 ifij

o , (26)
Oy =033,d0y =doy
£g) =833, dEy =dEgy
Under the triaxial condition in Eq. (26), from Eq. (25), we have:
dey, = aydoy, +2a,doyy +a301,d07 + a,(01,doy; +205,d00,) a@n
dey, = aidoyy +2a,d0y, + 305, doy + ay (01 doy +205,doy,)
Noting that:
Y o
oy=p +34 Cp=p ~34
doy =dp'+%dq, doy, :dp'—%dq
i 1 ) 28)
&y =78 +Es, £33 =38y ~3 &
dsy =tde, +de,, dey, =1de, —Lds,
Eq. (27) can be written as:
ds, =(9a, +6a, +9p'a; +9p‘a4)dp'+2a4qdq .
) 9
de; =2asqdp +%a,dq @)
Comparing Bq. (29) with Eq. (1), we can determine:
pmgio Ll Lo 1 1P 30
AT T UK 66 @ G0
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Based onEq. (2): Again using the same principle as mentioned before, the coefficients bs, bs, ..., by, The matrix form of Bq. (36) can be written as {de}= [C]{dtf'}, that is:

are assumed to be zero. Thus, Eq. (23) with Dy similar to Cy, in Eq. (22) is reduced to:

-|dey
' ' v de; B 11
Dy (0} = biSySy + b, (8y 8y + 848y ) + byoySy + bySyoy @31 " o 2a, G ay b e, s+ a ”_lJi ‘T_l?; ”_fijl
q q. q. s
' ' de o Oy O doy,
Using Eq. (31), Eq. (23) can be written as, noting oy = o7y, dey =dey: 2 ay vy tay o +20y @ togtas q—‘l]z 7 '(‘;]—1
! ' ' deyy | e, vy tas a taytas oy +2a Zu Zn % \idoy, .
doy = b6ydey, + 2bydey +byoydey, +bSyoydey (32) I o @ @ (39)
. v %1 I Lo %
d; ) do,
. e 712 J J qJ G 12
Under the triaxial condition in Eq, (26), from Eq. (32), we have: g g
o I In o L o
' . ! ! dyx qJ qJ qJ G doy
dayy =bydey +2bydeyy +byoy dey, +by(0y,de) +20,dey) o3 o34 Ty 0o o 1
- . . . 63 drn) L9/ ¢/ 97 G lldos,
doyy = bidey, +2bydey, +byoyydey, +by (0, dey +20,de,y)
Noting the relationships in Eq. (28), equation Eq. (33) can be written as: 1 ] 26 o o
=52 20 bt ‘Vhered}/lz:zflz’d}'z:=26‘23»d73|=2€Jl)a|=‘9‘1{“+‘3‘51a2 zﬁ“ﬁx%:—"“—‘éqz;—ﬂ
D =(by+%£by+p by + pbye, +byqe,
N 3 P ba)ey +bage o, =202 0u"0n 205370070  Itis seen that the matrix [C] in Eq. (39) is symmetric. If no shear
(34) 4 6qJ »&s 60/
dq=byqe, +3by &, dilation, i.e. J=co, all items multiplied by 1/ will be zero and there are only &, @, and 1/G left in the matrix
which is the same as that for an isotropic elasticity matrix,
Comparing Eq. (34) with Bq. (2), we can determine: The matrix form of Eq. (37) can be written as {do" }= [D]{da} , that is:
b4=b3=——';-, b,=G, b,=z_§6+2iy 35)
q ¢ 5
doy | T ~Joy, =Joy, —Joy, |[ds
+2 4 + + + 12 23 31 1
Using Egs. (30) and (35), the two tensor forms of Eqs. (25) and (33) can be written as: i h+2by Potbathe Pathy+hs q q q
Lo 1 | b A28 Parfieps TS B 20 fde
P S . 1 Lo . 4 q q
dey = (————-"")5doy +—do,; +—oydoy +—8,0,do (36) , _ _ _
Y T P L AL Y: S 2q7 VAT T T TR Ao | | Bye o4 By PotBotfs fr+25s quf,z J;‘z; Joy, dey (40)
- q
T =T - J - J -
. = 2= 2pl = = J . J ‘ doy, Ll 2 iz G 0 0 dyy,
doy =(K ~2G +—==J)5;dey, +2Gdey; ~—oydey, ——Syoydey (37 4 g L)
3 q q q —Jon —Joy —Joy o g 0
do dy
23 _fl ~q _q 23
Noting that in a general stress state, the mean stress p’and the deviator stress g are: —Jos —Joy —Joy 0 0 g
doy | | ¢ q q Jldrn
p'=0u/3=(on+ o+ )3 I ST S
where g, = K +2G, B, = K ~2G, f; = —(0p, + 033 ~2011), fy = ——(01y + 033 —203,), + It is seen from Eq. (40)
(38) 3 3 3q 3q
3 ( )1 2 1 [ N 2 5 ( 2 2 2 )]|/z that the matrix [D] is symmetric. If there is no shear-dilation, that is J =0, all the items multiplied
=7 SySy 2 (o1 -02) +lon -on) +(o3 -0 ) +6lof +of + o by J become zero. The resulting matrix is the same as that for isotropic elasticity matrix.

It is noted that in Eqs. (39) and (40), the items with 1/J or J (including o,04,05 and Sy By f5) are
divided by the deviator stress ¢. If g = 0, all those items divided by g shall be set to zero. When ¢ > 0 and 1/J or
J # 0, the behavior simulated is “induced anisotroic”. The matrix [C] in Eq. (39) can be inversed as [C]" to
express {do}in terms of {ds}. However, [C]" may not be equal to [D] in Bq, (40). The same is true that [D]"
may not be equal to [C] in Eq. (39).
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PHYSICAL MEANINGS OF ITEMS IN THE TWO GENERALIZED FORMS
From Eq. (39), under pure shear stress increment do;, only, the shear stress induced strains are:

o 1
deyy =2 day,, dey,=—2do
=y Ao A= don

@“n
deyy =2 day,, d, =L do;
0=y 90w =%

The shear strain increment dy,, caused by day, is expected. If the pre-shear stress oy, exists, that is, 012> 0
and ¢>0, then the shear stress increment doy, will produce axial strain increments deyy,dey; , déss in three

directions controlled by the coupling modulus /. The shear stress induced axial strains are illustrated in
Fig. 6(a) for shear-compression behavior (loose sand) (/> 0) and in Fig. 6(b) for shear-dilation (expansion)
behavior (dense sand) (J < 0). For shear-compression behavior, the resulting axial strain increment deyy is

positive (downward) in Fig.6(a). But the resulting axial strain increment ds,, is negative (upward) as shown in
Fig.6(b) for shear-dilation behavior. This is consistent with observations.

Oy
ds,, =q—“j’akr,2 >0

do
12.

— O — dy,, =-6d0'12
20
1y — Oy T +—
12 dois
de >0
@
l de,, =o'—“;dalz <0
q
dm ., O — dy, =—doy,
J<0
Ay e— o —
o doiz
dep<0

(b)

Fig, 6 Under Shear Stress doy, only, (a) Shear-Compression Behavior, (b) Shear-Dilation Behavior
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From Eq. (39), under pure axial stress increment doy; only, the axial stress induced strains are:

1 1  20,-Cp—0un.,
deyy = (ot ——+ L2 TByge,

+
9K 3G 397
(42)
Oy oy Oap 5
ar —q_jdans ayy —q_zjsddm dysy =q—?;‘d‘-"n

The axial strain increment de;, resulted due to doy, is expected, but depending on (20, ~ 03 ~033)(3g)) .

. If pre-shear stresses o1z, Oy, and o3 exist, then the axial stress increment dcr;, will produce shear strain

increments dyy,dy,;, dys with respect to oy, 033, and a3, accordingly, controlled by the coupling modulus
J. The axial stress induced shear strain are illustrated in Fig, 7(a) for shear-compression behavior (loose sand)
(/> 0) and in Fig, 7(b) for shear-dilation (expansion) behavior (dense sand) (J < 0), For shear-compression
behavior, the resulting shear strain increment dy, is positive (foward right) in Fig. 7(a). But the resulting shear

strain increment dy,, is negative (toward left) as shown in Fig. 7(b) for shear-dilation behavior.
l ds,
l dcr'“
o .
———— Ol — dy, =——; doy, >0
q

J>0

Ay, — —

O12
Idgn

d&‘n ‘

l_ dsy,

doy,

(@

<0

o ‘
———— Ois +—— dy, =—24o

J 11
J<0 7

-

ay; — —

o2
Tdo'n

deny
(b)

Fig. 7 Under Axial Stress do-,' ; only, (a) Shear-Compression Behavior, (b) Shear-Dilation Behavior
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From Eq, (40), under pure shear strain increment dy;; only, the shear strain induced stresses are:

—jan dr

da;l =:ﬂdi’uu da';zz =
q “3)

-Jop,

dﬂ’;; = a1 doy, = (_;dhz

1t is expected that the shear strain dy;, produces shear stress increment do, . If the pre-shear stress o, exists,
then the shear strain increment dy;, will produce axial stress increments doyy ,doy, dos; in three directions,
negative for shear-compression behavior with J>0 as shown in Fig. 8(a), but positive for shear-dilation
behavior with J <0 as in Fig. 8(b). For a shear-compression soil (loose sand), the shear strain increment
dy,, will cause compression (collapse) of the soil as illustrated in Fig. 8(a), therefore a reduction in the axial
stress. However, for a shear-dilation soil (dense sand), the shear strain increment dy;, will cause expansion

(additional vertical constrain) of the soil as illustrated in Fig. 8(b), therefore an increase in the axial stress.
These modeling results are considered consistent with the physical behavior of shear-compression or shear-
dilation soils.

ol =% gy 0
q

dya s op— don =Gdy,
J>0
do—;z — —
012 T d}’l2
Lz'o",l
@
la'cr'11 2o dy, >0
q _
ana o1y — Ao =Gdry
J<0
dO‘u — o — 4—-——:1
, N2
T doy

(b)

Tig. 8 Under Shear Strain dy,, only, (a) Shear-Compression Behavior, (b) Shear Dilation Behavior
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From Eq. (40), under pure axial strain increment ds;, only, the axial strain increment induced stress
increments are

.= 4= 2T, . . .
doy =[K+—G +-—(0y + 033 —20y)ldey
3 3q
(44

—~JO gy

—Joy, -Joy

deyy,  doy = dey

dojy = dsyy, doy =

It is expected that an axial stress increment dO','[ is produced by dg,;. However, the resulting dO’; 1 depends on
2.7(0"22 +cr'33—2cr]',)/(3q). If pre-shear stresses o, Oy, and oy exist, then the axial strain increment
dg,, will produce shear stress increments doyy,doy;, do; with respect to oy, 033, and o3 accordingly,
controlled by the coupling modulus J. The axial strain induced shear stresses are illustrated in Fig. 9(a) for
shear-compression behavior (J >0) and in Fig. 9(b) for shear-dilation behavior (J <0), For a shear-
compression soil (loose sand) as illustrated in Fig. 9(a), additional shear strain increment dy;, (towards right)
can occur under the axial strain incfement dg;. In other words, the upper half zig-zag “soil” has the potential

to move towards right. Imagine a plate in contact with the top surface of the upper half zig-zag “soil”, the plate
will drag the “soil” towards left for the potential movement of the “soil” towards right, thereby reducing the
shear stress oy, that is, resulting a negative doy, <0. The same explanation can be used for a shear-dilation soil

as shown in Fig. 9(b).
l doy,

deyy

—— O — do, = ~Jon

de, <0

1 do,
ld&‘n
———— 02— do, =

J<0

=Jo,

dey, >0

doyy p————

on
Tdé‘n

I

do,

(®)

Fig. 9 Under Axial Strain de;, only, (a) Shear-Compression Behavior, (b) Shear-Dilation Behavior
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DISCUSSIONS

The proposed KGJ model is an improvement of the two-moduli models (Duncan and Chang, 1970;
Domaschuk and Villiappan, 1975) which cannot consider shear stress induced dilation or compression. In spite
of the improvement, the XG.J model has its limitations, For example, the KGJ model has the same problem as
the two-moduli models in defining an unloading/reloading condition. This issue has not been investigated here,
The KGJ model may use the same unloading/reloading criteria as used by Duncan and Chang (1970). The
curve fitting functions used to determine the three moduli in the KGJ model in this paper may not be appropriate
for some soils. However, these functions may be replaced by any other mathematical functions for best data
fitting based on the new idea and framework of the XGJ model. For example, if the stress-strain behavior
shows strain-softening with a peak shear strength, a proper mathematical function shall be selected to fit the
stress-strain curve with a peak vatue and likely a residual value at a large strain. The generalized form of the

KGJ model (or KGJ model) has a clear physical meaning and has shown the potential to describe the non-
linear and shear-dilative stress-strain behavior of soils,

CONCLUSIONS

The prediction using the KGJ model calibrated using CID test data is in good agreement with the
measured test data from three drained triaxial shear tests in constant p’ It is found that the two generalized
matrixes are symmetric and therefore are easy for implementation in finite element analyses. It is also found that
the generalized relationships can explain the physical phenomena for shear-compression soils or shear-dilation
soils.

The verification of the generalized models is important. However, the true and complete verification of
the generalized model by test data is not easy or probably impossible since data of tests with independent
control of six stresses may be necessary. Limited direct verification may be done for example using data from a
hollow cylinder apparatus. Indirect verification may be done by implementing the generalized models in finite
element analysis of geotechnical structures, for example, a footing on soils and comparing predicted results with
measured results, Further research in this area is necessary.
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