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VERTICAL VIBRATION OF PiLES IN
NON-HOMOGENEOUS SOIL

Fakhry Aboul-ella*

SYNOPSIS

A dynamic model for the vertical vibration of piles driven in soil, which has
properties varying with distance from the pile, is presented. Soil layers around the pile are
divided into rings of different properties. The effect of high strains around the piles and
lack of bond between soil and piles can be studied using this model.

INTRODUCTION

In recent years, there has been a marked increase in interest in the dynamic
behaviour of piles due to its effects on the behaviour of structures with soil-pile
interactions (Aboul-ella 1984; Aboul-ella & Novak 1980). Novak and Aboul-
ella (1978 a) have presented a model for the impedance functions (complex
stiffnesses) of piles embedded in layered soil which agsumes that the soil
reslstance (reactions)are those of the plane strain case and represents the pile by
finite elements. The theory is based on the assumptions that the soil is bonded to
the piles and is linearly viscoelastic. However, the region adjacent to the piles can
have high strains which reduces the dynamic shear modulus and increases the
damping of this region. This is a non-linear behaviour which can be studied, as
well as the lack of bond between pile and soil, by assuming that each layer of soil
surrounding the pile is composed of rings (Fig. 1) of different properties.

©"This paper presents the matrix formulation of the complex soil reactions of
yers which can be modelled by soil rings. The soil properties, which can be
adjusted according to the strain level, are assumed constant within each ringand
fferent in individual rings. Each ring is homogeneous, isotropic and linearly
scoelastic with material damping of frequency independent hysteretic type,
ndy & Novak (1980) and Sheta & Novak (1980) have analyzed a case ofarigid
linder surrounded by a massless thin ring followed by an infinite medium. The
e-of one massless ring around the pile is not sufficient to study soil non-
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_vary at the intetfaces of the layers. If the pile head lies above the soil surface, or:
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‘uted along the pilelength, and (2) concentrated tip reactions from the soil below
e pile tip. Dynamic soil reactions of homogencous layers are given for all
ibration modes in Novak et al. (1978) for the plane strain case. They have
-proved to be very useful in pile dynamics (El-Sharnouby & Novak 1985; Novak

979; Novak & Aboul-ella 1978 a), Tip reactions are taken equal to those of a
iscoelastic half-space as described by Novak & Aboul-ella (1978 a). Ifthe soil
roperties vary, in each layer, with horizontal distance from the pile, the soil
actions can be derived following the pattern of the stiffness matrix method, The
yer is divided into rings surrounding the rigid cylinder and the stiffness matrix
feach ring is established. The overall stiffness matrix of the soil layer (of unit
ngth in height) as a whole is assembled from the ring stiffiness matrices. Hence,

by applying the proper boundary conditions, the soil reactions are obtained.
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Fig. 1 Vertical Displacement of Cylinder in Horizontally Varying Soil. /] |
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present model includes the mass of soil rings and alfows for as many rings as are }! L1 w
considered desirable, . ; I
i ing n .Pile Element
The decrease of shear modulus G and the increase of material (‘iampl_ng - Half space . - : |
towards the pile modify the complex soil reactions and stiffhesses of piles with I :
frequency, and results in increasing the vibration amplitudes. . 3

The pile is assumed vertical, linearly elastic and of circular cross section that

if the pile is assumed to be separated from the soil, the adjacent layers a
modelled as void (Fig. 2).

SOIL RESISTANCE

2 Types of Piles Embedded in Layered Media and Vertical Vibra-
tion,

During vibration, the pifc will receive a soil resistance of.two typ'es (1
reactions from the surrounding soils (dynamic soil reactions) which are distrib
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The shear stress T, is

= G (I+ iDs))  &w (D)

Ring Stiffness Matrix in Vertical Vibration

Consider only one ring of soil bourided by the radii r, and 1, (Fig. 1). The
stiffness matrix of this ring is the relationship between the two end shear forces
P, and P, (Fig. 1) and the corresponding end displacements 'w_, and w,. The
amplitude of the vertical displacement w(r) of a homogeneous medium at radius .
1 can be obtained from the general solution of the equation of motion of that
medium. This amplitude is given by Novak et al. (1978) as ;

&r
= -G 1+ iDs) s [A K, s5) + B L (s)] 2

- Using the aboye shear stress, the end shear forces of the ring i {Fig. 1) can
be given as 2

vl - j; T, r = fl) T de

wi{r) = A K, () + B I, () (1) =
in which = 27m G (L + iDs) s [A K, (sr) + B I (sr)]
A, B = constants
K, I, = modificd Bessel functions of order zero v = 27 G+ iDs)s, [A K, (sr) + B I ()]
st = w T i a 3
The arguments st; and sr, are complex dimensionless frequencies
Vsl/ 1+ iDs]
B mrl . am i
w = circular frequency t ‘ 1= = 1,
s/ 1+ iDs, 1+ iDs,
T, = radius s
= 5 - 8, |

o= a1

. — 1= @
T ' s 1+ iDs 1+ iDs,
Vs, = G,/ P = shear wave velocity of ring i

“in which the real dimensionless frequencies &, =10 rif\/sl and a_ =
02

Ds, = material damping of ring i _2’_{V31' Then the complex ring stiffnesses are defined by the boundary
G = g odulus of ring i onditions w(r,} = w,, and w(r,) = w_,. These conditions yicld the constants A
. = shear m 8 nd B The end shear forces P, and P, corresponding to end displacements
P, = mass density of ring i
vl Kaun LS War

For a ring with r,= infinity (i.e. outer region) the constant B in equation
1 must be equal to zero in order to have displacements decaying with

)
-~
=
z

: . v2 R2] R22
horizontal distance. €2
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in which the elements K |, . .. Kp,, of the ring stiffness matrix are : k. A i o |
o | BG) @) LEK, () [ N [ N R
Kew =+ @ 4 - P - * 0 :
KD (al) . ID (31) IU (al) Kg (al) C 1 H A ©)]
. T . N * s External stiffness matrix displacements
Kepp =* @ a @)/ L,G@) — K@) K (al)_ forces of the whole layer
o - _ Therefore, the soil reaction kw can be given as :
N + * * *
KRZI = * @ 32 Ii (32) KO (a2) _ _I(M kw = A - CT H—l C
" * * * .
K,(a) I (a )
I @) Kya)) 0o@) T () | = G [8,+ i8] (10)
. (6) wi w2
K - @ " B K (; K (g ) — 1, (a‘z) /1, (‘;1) ] in which G =G , the shear modulus of the outer region and the dimension-
R22 2 B 12 0t _ less parameters S, , are real. The parameter S, Tepresents the real stiffness
in which ) . of the soil layer of unit length and 8, represents the damping.

@ = 27 G (+iDs)|l; (@) /1, @) — K, (a) / K, (alil In order to demonstrate the effect of variation of soil properties with
o - distance an example has been analyzed with assumed values of G and Ds

The stiffness of the outer media (infinite region) is the shear force that can
produce a unit displacement amplitude of this region at r = r_. Therefore, the

stiffness of the outer media can be piven as :

for each ring as shown in Fig. 3. 3., are given for the case of variable soil
- as well as the case of constant soil properties (homogeneous soil) using the same
. developed computer program. This has been done in order to check the program

by comparing S,,; »0f the homogeneous layer with those given in Novak et al.
(1978).

&

2m G (1+iDs) a K, (a:])/Kq (@) @)

a, 1 wr
in which au* = — and a, =

I/ 1+ iDs Vs

Soil Reaction of the Layer k ,

It can be seen from Fig. 3 that the decrease of soil shear modulus G,
zaccompanied by an increase of material damping Ds towards the pile, make -
: parameters Swl, »» and after that the pile’s parameters, frequency dependent
‘which can be easily incorporated in the analysis of pile-supported structures.

k is the shear force that is required at the interface between the rigid: :
cyiind‘;r and the first ring in order to make w equal unity. Using the stiffness
matrices of all rings and the stiffness of the outer region, the stiffness matrix
of the whole layer can be assembled. This matrix is the refationship between the
external forces and displacements at the interfaces between rings. It can be
partitioned and given as :

COMPLEX STIFFNESS OF PILE Kw!

~ The pile is viewed as composed of prismatic eléments extending between
the interfaces of layers (Fig. 2). The stiffness mairix of each element is deter-
ined first using the soil reaction described by equation 10. This matrix is
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i= =
ki = Real K| EpA. /1 (12)
. r and the constant of equivalent viscous damping
c. = kAl——- oi =
n ] &~ Imaginary K Ep.A £,/ v (13)
a4 0.5 0.6 0.7 0.8 0.3 106 % In ti . . )
3 s v 00 00 1 \ n these equations Al, 1, = the area and radius of the topmost element
o | Soh4LILE 1 Ly N of the pile, respectively, Ep = Young's modulus of piles, and V_ = shear
; r -y o+ n
g o ’ 2 wave velocity of soil in the lowest layer.
g /
20 The dimension i
; o 1e u'nens-lon €ss parameters fwl. , are suitable for parametric studies
% | vomoseneous  tager whic 1 are given in Novak & Aboul-ella (1978 b) for layered soil in which each
i layer is homogeneous. Here an example is given for the case of a soil having
3 Xon: Hoogeneous tayer ‘
g' s | I, '5&3 ) Kl
§ Swl I l A i
3oL
— 0.07
Z- \ -
—
0 ! . ! I LN -, il L o 0.08]
0 0.2 0.4 0.8 0.8 1.0 1.2 1.4 1.6 1.8
L,

Fig. 3 Vertical Stiffness and Damping Parameter § (D = 0.1),

comnplex and includes the properties of both the pile and the soil. The overall
stiffness matrix of the whole pile is assembled and solved in order to yield the
vertical stiffness (impedence function) of the pile, K |, which s the external force
acting at the pile head in order to produce unit vibration amplitude of the head.
A method of doing so is described in Novak & Aboul-eila (1978 a). It is
convenient to split the complex stiffriess, K | into its real part (true stiffness) and -
imaginary part (damping) and introduce the constant of equivalent viscous

damping, C1 Thus, the complex vertical stiffness of one pile is also given as

03

Wl Hozogenaous Laver

Ki=ki+ ioc) an

Introducing the dimensionless stiffness and damping parameters fwl’ fa ' : .
the real stiffness of one pile g4 Dimensionless Vertical Stiffness and Damping of Piles T (D = (.1)
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i5%
Results of Resonant Column Test on Sand Sample
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Fig. 5 Variation of Shear Modulus and Material Damping with Strain.

properties varying with distance. All data are given in Fig. 4 as wellas £, for
both cases i.e., homogeneous layer and horizontally varying soil layer. At smail
and moderate values of the dimensionless frequency a, which are the cases of
pite supported foundations, the decrease of G and the increase of Ds towards the
pile generally decrease the complex stiffness of the pile i.e. decrease fwl. 5

Thedecrease of £, , will decrease the natural frequencies of pile-supported
sturctures and increase their resonani amplitudes. In practical analysis the

relationships between G, Ds and strains can be experimentally detenni}led (Fig.
5). Therefore the adjusted values of G and Ds can be calculated according to the
strain level at the centre of each ring.

RESPONSE OF BLOCK FOUNDATIONS

Pites in a group are connected by the soil and thus interact with one another.
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This pile-soil-pile interaction modifies group stiffness and damping and-can be
studied by many approaches. El-Sharnouby (El-Shamouby and Novak 1985)
made use of thie stiffness method while Wolf (Wolf & Arx 1978} has used the
finite element technique. Novak (Novak & El-Sharnouby 1983) has recom-
mended the use of dynamic interaction coefficiens which have been successfully
used by Kaynia (Kaynia & Kausel 1982). The interaction factors, which are used
by Poulos (1979; Polous & Mattes 1974) for static stiffnesses, are still approxi-
- mate because they are calculated from the displacements of soil in which the piles
+are absent except for the reference pile.

©a)  Rigid Cape
b)  +5835m

< +42.15m

2426.05m

<*iLISm

£0.40m I

i
N

X Pl ™.

:KHaves radiate from composite

pile infinity

Fig. 6 Composite Pile Model for Pile Groups.

Ifthe pilesare closely spaced and connected by rigid caps (Fig. 6-a), the piles
and the enclosed soil will vibrate as one body which receives soil reaction to its
notion from the outside boundaries of the group, Therefore, the group of piles
and the soil inside them can be considered, approximately, as one large
composite pile with an effective area equal to the area of piles, plus the area of
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: - 2
Table 1: Stiffness constants of 201 piles of Angra 2 Nuclear Plg) Mg-e.w” cos wt
Power Plant : "
. P
METHOD REAL STIFFNESS kw! T 4,

Present - 4327 GN/m 1 L 1-piles

El-Sharnouby & Novak 1985 404.0 "

Wolf & Arx 1978 652.3 "

S 2 L

soif multiplied by the modular ratio Es/Ep, where Es and Ep is the Young's
modulus for seil and piles respectively. N

Aboul-elfa (1984) had introduced the model of the composite pile in which
generated geometric damping is calculated from waves that propagate from piles

to infinity and, therefore, it eliminates the effect of wave scattering and the
generation of sianding waves within the group of piles. The model is simple but
very versatile and has the advantage of using the available programs that
calculate the impedance functions of one pile, with or .without soil varying
vertically and or horizontally, at negligible computing costs. These progratus, as
those developed by the author (1984) and Novak (Novak & Aboul-ella 1978a),
are well prepared and can analyze continuous or stepwise variation of soil and
pile properties with depth and an arbitrary relaxation of pile tips.

Frequency (Hertz)
Fig. 7 Comparsion of present approach with Experiment.

his experiment were described by Sheta & Novak (1982). The comparison
etween the composite pile, the experiment, and the approach of Sheta supports

The model is approximate and therefore a comparison with other theories he use of a composite pile model for closely spaced pile groups

and experiments is desirable. The stiffness (real part of the complex stiffness) of
201 piles supporting the reactor building of Angra 2 nuclear power plantin Brazil
(Fig 6-b) is calculated using the composite pile model and is compared with the
results of the finite element method by Wolf and Arx (1978) and the stiffness
method by El-Sharnouby and Novak (1985). The cornparison (Table 1) indicates
a full agreernent with El-Sharnouby and a reasonable agreement with Wolfand,
therefore it shows the usefullness of the corposite pile model. The difference in
stiffness between Wolf and the present approaches could be due to the very large
size of the group, the different assumption made in the two approaches, the very,
irregular soil profile, and a very low pile-soil stiffness ratio. Also Wolf has
lumped every four piles into one which could contribute to the difference in;
stiffness (Ei-Sharnouby & Novak (1985)).

Anexample ofthe vertical response of a block machine foundation is shown
in Fig. 8 in which all the input data are given, The increase of the resonant
plitude, due to the variations of G and Ds, is about 20% and depends mainly
i the chosen values of G and Ds of the soil rings surrounding the piles i.e. if
eaker rings are chosen, the increase of the resonant amplitude will become
ore than the one shown in Fig. &

SUMMARY AND CONCLUSIONS.

A theory for veriical vibration of piles in horizontally varying soil is pre-
ented. This approach can be used to study the non-linear behaviour of piles and
e effect of weak zones in regions of high stresses around piles. The solution is
ased on the matrix stiffness method for which the soil layer is divided into rings

Finally the experimental response curve measured for a small pile found
f different properties and the ring stiffness matrix is formulated. The decrease

tion is compared with that of the present composite pile (Fig. 7). All the data from:
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Fig. 8 Vertical Response of Block Foundation,
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of shear modulus, accompanied by an increase of material damping of soil
towards the pile, decreases the vibrational amplitudes of pile-supported founda-
tions,
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NOTATION
A, = dimensionless vertical amplitude of footing
2, = 1, w/Vs = dimensionless frequency
Ct = damping constant of one pile
Ds = material damping constant of soil
Ep = Young's modulus of pile
Es = Young’s modulus of soil _
fwl, , = dimensionless vertical stiffness and damping parameters of pile -
G = shear modulus of seil
G, = shear modulus of scil at pile tip (fowest layer)
h = length of pile element
Iﬂ, . = modified Bessel functions of first kind of order zero and one, re
spectively;
I = moment of inertia of pile cross section

VERTICAL VIBRATION

complex stiffness of pile at head

modified Bessel functions of second kind of order zero and one
respectively,

3

real stiffness of one pile

length of pile

mass of footing

pile radius

dimensionless parameters of vertical soil resistance.

shear wave velocity of soil
vertical amplitude of footing
shear stress

mass density of soil

circular frequency
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