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VIBRATION OF MACHINE FOUNDATIONS ON
ELASTIC MEDIA

PisipHI KARASUDHI*, SEUNG-YO Sont and SenG-Lip Ipei

SYNOPSIS

Vibrations of a long machine foundation are studied for which the excitation force
caused by the unbalanced mass of the machine is frequency dependent. The mediym sup-
porting the foundation is assumed to be isotropic and elastic. The three modes of vibration
involved are vertical, horizontal and rocking; the horizontal and rocking rmotions
are coupled for this analysis. The response curves for the vertical motion coniain one
resonant peak, while (wo resonant peaks exist in the coupled horizontal and rocking
motion. Tt s found that the foundation behavior depends heavily upon the operating fre-
quency, foundation mass and dimensions, the Poisson’s ratio of the medium having less
influence, The results are presented in the form of charts to facilitate the analysis and de-
diga of actual foundations.

INTRODUCTION

The vibration of a thick spread footing supporting a machine can be
treated, for practical purposes, as that of a rigid body on a half-space. Many
investigations have been carried out to obtain solutions for the vibration
of a rigid body on an elastic, homogeneous and isotropic half-space. The
approaches adopted in these studies can be classified into two categories;
either a suitable contact stress distribution is assumed or the indentation
of the rigid body is specified.

For three dimensional problems solutions have been given when osciila-
ting stresses are prescribed in a circular region. REISSNER (1936) and
later MILLER & PURSEY (1954) treated the case of a uniform pressure on
an elastic half-space. SUNG (1953), QUINLAN (1953) and BYCROFT
(1956) approached two- and three-dimensional problems by assuming the
dynamic stress distribution to be proportional to the static stress distribu-
tion, RICHART et af (1960, 1966, 1967 and 1967) treated three-dimensional
problems by using a mass-spring system and a mass-spring-dashpot system
and compared their solutions with the theoretical solutions of SUNG (1953)
and BYCROFT (1956} and with the test results of FRY (1963).

When a body vibrates on an elastic half-space, the problem may be for-
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mulated 5o as to be governed by a set of dual infegral equations, the first one
corresponding to the specified displacement given by the body while the

second represents the zero stress condition outside of the contact region.

AWOJOBI & GROOTENHUIS (1965) and ROBERTSON {1966) solved
the problem of a smooth, circular, rigid disk undergoing vertical oscillations,
while ZAKORKO & ROSTOVTSEY (1965) treated the cases of vertical
and rocking oscillations, Analogous to these three-dimensional problems
are the two-dimensional cases, which are also governed by a set of dual in-
tegral equations, AWOQJOBI (1966) solved the probiem of rocking vibration,
KARASUDHI et al (1968) treated the cases of vertical, horizontal and
rocking oscillations. ’

Al the investigations mentioned jn the foregoing involved a body under-
going vibrations with g single degree of freedom. Using a suitable super-
position, KARASUDHI et al (1968) gave an approximate relationship be-
tween contact forces and displacements of coupled horizontal and rocking
vibrations,

The purpose of this research is to study the behavior of a long, rectangular,
rigid machine foundation resting on an elastic medium, The vibration is
caused by an unbalanced mass in the machine rotating in a vertical plane
and about a horizontal axis located at a certain height above the surface of
the medium. The stiffnesses for vertical and coupled hotizontal and rocking
vibrations proposed by KARASUDHI et al (1968) are used.

METHOD OF ANALYSIS

The vibration of a rigid, rectangular foundation of infinite length resting
on an isotropic elastic half-space is considered. Figure 1 shows the coordi
nhate system and the significant dimensions(, The infinite length of the founda-
tion runs along the z - axis and the half-space occupies the region y = 0. The
systern is excited by an unbalanced mass i, per unit length along the z-axis,
which rotates in the xy-plane with a constant angular velocity Q and an eccer-
tricity ¢. Since m1, is small compared to the total mass of the system, the
motion of the axis of rotation of m, is proportionally small in comparison
with &. The force applied to the System, for practical purposes, is aApproxi-
mately equal to a centrifugal force of magnitude

FemQPe .. 00 (1)
A rigid element of height rigidly connects the axis of rotation of m, and
the mass center of the rigid foundation. Harmonic motions are assumed in
this study and the mass center of the foundation is assumed to coincide with

-
(0 A complete list of the symbols used is given in the Appendix.
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z

Fig. 1. 'The half-space nirodel, Fig. 2. Displaced configuration.

the geometric centroid of the cross-section of the machine-foundation systeni.

Under the applied force given by Eq. (1), the center of the base of the
foundation undergoes vertical displacement v,, horizontal translation u, and
rocking angle ¥,. These three modes of vibration are depicted in Fig, 2 and

are governed by the three equations of motion
d? .
md—fz(vr+k—hcos‘I’,):P,+Fsm(Qt+‘Pr, ..... (2)

d? .
dez(ur-k!z sin Wi} = 0, + Fcos (Qt+V), ..... (3)

2
Jd_(‘lﬂ.)=Tr——hQrcos‘P,—hP,sin‘Pr+HFcos(Qt+‘I’,) . (4)
de?

where m denotes the mass of the foundation per unit length along the z-axis,
J is the mass polar moment of inertia about the mass center per unit length
of the foundation along the z-axis, 2b and 2% are respectively the width and
thickness of the foundation, and B, Q. and T, are respectively the contact
vertical force, contact horizontal force and contact torque per unit length
along the z-axis.

105



KARASUDHI, SON AND LEE

In harmonic motions, the contact forces and torque are given in terms of
the displacements by KARASUDHI et al (1968) in the form

P =xGav, (5)

o) =0 [ ] Gl ©

where Re(P),Re (Q) and Re(T) denote the real parts of the complex
functions in the parentheses and are equal to P, O, and 7, respectively,
Re (¥), Re (w) and Re (1) are equal to v, u, and ¥, respectively, G denotes
the modulus of rigidity of the elastic medium; and &, d;y, dy,, dy and dy, are
complex stiffnesses. It should be noted that dpy = .

The complex displacement functions v, u and ¥, which are assumed to be
harmonic, can be represented in the forms

Vevexp [F(Q+8)], ool ... (7)
u=Uexp F(Qr+8,)], ............ (8)
U=Texp I (Qr+8)], oovvenn.... (9

where v, U and ¥ are real functions which depend on frequency, and 5, 8,
and 8; denote the phase angles. On the assumption that v, U and ¥ are small
Eqgs. (7), (8) and (9) lead to

cos (P)m 1, sin(¥DwmW¥, .........,. (10)
sin (Q + ¥,) = sin (QF), cos (Qf + V) % cos Q, ... (I1)
(?;« cos (V) =~ O, (%% sin () & —2 Re (), Re (@) ¥, ~ O. . {12)
The use of Eq. (1) and Egs. (5) to (12) results in Egs. (2), (3) and (4) becom-
ing
— Q%1 Re () = 7G Re (4¥) - Re [inrg e02 exp GQNT .. (13)
~%m Re (u + If) = w6 Re (4, u — d;,59%)
+RelmoeQ2exp QAT ..., ... .. {14)
—Q*J Re () = 1Gb Re (dy,u + dy,b0r)
- @Gh Re (@, + &,,04) + H Re [mo 802 exp (IQ0]. . (15)

Substitution of Egs, (7), (8) and (9) in Egs. (13), (14) and (15) leads to
three equations of the form

Re [ oxp (i1 = Re [Bexp () .. ... ... (16)
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where 4 and B are complex functions and can be shown by a simple expan-
sion to be equal; Egs, (13), (14) and (15) become, therefore,
@2y venp (B < it .. (17)
(N + 7811) w exp (18,) + (A + 7md15) ¥ exp (i85) = — 17, ., ( 18)
7 (-Cy dyy + dyo) uexp (/8,) + [mn2 (T+& 23

~7 (G Gy - )] W exp (i83) = —Lm2, ... ... (19)

where v, u, ¥) = (v, u, b9) pb2emy, ......... {20)
- - m a7

=20 e, 21

T L 1)

T]:ég, C:\/-ci, ............... (22)
< P

3;1 = ]i/b, CZ = H/b .............. (23)

In these equations p is the mass density of the elastic mediom, and i and
n will, henceforth, be referred to as the ‘mass ratio’ and the ‘frequency factor®
respectively, '

It is obvious that the vertical vibration of the foundation is governed by
Eq. (17), and that the coupled horizontal and rocking vibrations are governed
by Eqgs. (18) and (19}, In Eq. (22) ¢ is the shear wave velocity of the elastic
medium,

Vertical Vibration
Solution of the complex Eq. (17} yields
v =02 {[Wn? + 7 (Re(@)]* + [ Tm (a")]z} "o (24)
8, = arc tau{ [{n? + 7 Re ()] fm Im (&) } ...... (25)

where Im denotes the imaginary part of the complex function in the
parentheses. The non-dimensional amplitude v is plotted against arguments
of 7 in Fig. 3 (at the end of the paper} for values of Poisson’s ratio, v, of 0,
1/4, 1/3 and 1/2, and for various values of f.

Coupled Horizontal and Rocking Vibrations

Solution of the complex Egs. (18) and (19) yields

- 1'@1401 + A2D2)2 + (A4, Dy~ Ale)z
Df + Di

U

e, (26)
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_ V(BDy + ByDy)? + (B.D, "'B.ZDI)Z’ L

¥ 273
Df + D% (
A D, — A D
5, = atc tan — -_l_z_ﬁu), ......... 28
5 = alc an( 0D i Ab, (28)
B, D, -B,D
5, - arc m;z#), ......... 29
5 = arc tan ( .5, + 5D, (29)
where Ap=—mnt (1368 +8H 3
+ 2 (g4 6) Re (dp) —mm2 Re (dzg) v vt (30)
Ay = 12 €+ G I (@Ggg) 2 Im (@) v v (31)
By = —nil, — m? (g + L) Re(d; () + mi2Re (d),) (32)
B, = —m® (€ + §) Im (@gy) + 7 ® Im (@p) oo - (33)

Dy = w4 (L + % 34 amn? (1 + 45,%) Re (@) /3
—2 wiAn? §; Re (@;,) + 7fin® Re (@) + 72 [Re (dy,) Re (d55)
—~Tm (d;,) Im (&) - Re (@12 + Im @24 ... (34)

D, = mfin? (1 + 4 %) Im (dy,) /3 — 2 mmn2 §; Im (@y2)
+ wiin? Im (@,5) + 72 [Re (&) Im (F22) + Im (d;;) Re (d;2)
C2Re (i) IM (@] eere e (35)

The non-dimensional amplitudes u and ¥ are plotted against arguments
of m for various values of the parameters i, §; and &, for values of v of 0,
1/4, 1/3 and 1/2 in Figs. 4 to 21 (at the end of the paper). In general, each
curve in Figs. 4 to 21 has two resonant peaks, but the first resonant peak is
not clearly defined for some values of the parameters.

PERMISSIBLE AMPLITUDES OF VIBRATION

An important consideration in the design of a machine foundation is the
minimizing of the detrimental amplitude of vibration, since a large amplitude
may be harmful to the machine itself or to neighboring structures. Fur-
thermore, while the vibration may not result in any mechanical or structural
damage, it may cause intolerable nuisance to the people working in the
vicinity of the machine. Hence, the maximum allowable amplitude must
take these points into account. BARKAN (1962) found that, for normal
machine operation, the amplitude computed on the basis of the permissible
stresses for the supporting soil is too large to be acceptable to the operator.
He presented a table of permissible amplitudes of vibration for turbogenerator
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foundations. RAUSCH (1943) suggested that, to avoid damage to machines
or machine foundations, the maximum velocity of the vibration should not
exceed 1 in./sec, or the maximum acceleration should not exceed 0.5 times
gravitational acceleratioh, REIHER & MEISTER (1911) observed that
vibrations begin to be ‘troublesome’ and ‘noticeable’ to persons when the
maximum velocity exceeds 0.1 in./sec and 0.01 in./sec respectively; these
velocity criteria correspond to amplitudes of motion of 0.001 in. and 0.0001
in. respectively for a frequency of 1000 cycles/min.

Design Example

As an example of the use of Figs. 3 to 21 for the design of a machine founda-
tion o satisfy the aforementioned criteria, the following data are chosen.

The machine speed is 1000 rev/min and its total weight {mr+n1,},
including that of the foundation, is 4800 ib/ft. The unbalanced
weight and the design eccentricity, &, recommended by BARKAN
(1962) are respectively 300 1b/ft and 0.02 cm (or 0.00783 in.}, The
foundation width, 25, is 10 ft, and £, and €, as defined by Eq. (23)
. are taken as being equal to 0.5 and 0.8 respectively. For the elastic
medium ¢ = 700 ft/sec, v = 1/3 and the unit weight is 100 1b/ft.

By Egs. (21) and (22} /8 = 1.8 and 1 = 0.748. From Figs. 3, 10 and 19 the
corresponding values of v, ¥ and ¥ obtained for m = 0, 5 and 10 are respec-
tively v = 0.175, 0.182 and 0.115; » = 0.280, 0.340 and 0.215; ¥ = 0.385,
0,325 and 0.260. By parabolic interpolation the values of the nondimensional
amplitndes corresponding to i = 1.8 are vy = 0.186, ¥ = 0323 and ¥ =
0.364.

The maximum vertical displacement, v,,,,, taken as the superposition of
the amplitudes for the vertical and rocking vibrations, occurs at the tip of
the foundation, and is found from Eq. (20) to be equal to 0.000519 in., while
the horizontal amplitude is 0.000305 in. It can be seen that these amplitudes
are smaller than the permissible values mentioned earlier. The vibration may.
be noticeable, however, to persons working near the machine,

DISCUSSION AND CONCLUSIONS

Reference to Eqs. {17) to (19) shows that the vertical vibration is a single-
degree-of-freedom motion, while the coupled horizontal and rocking vibra-
tion is a two-degrees-of-freedom motion. Hence, each response curve has
one resonance peak in Fig. 3, while two resonance peaks are shown in
Figs. 4 to 21. The second peak in each of Figs. 4 to 21, beyond which the
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amplifude decreases rapidly, is higher in general than the first peak except
for some value of v, In, {; and §,. The slight increase in each response
curve in Figs. 4 to 12 well beyond the second resonance may be attributed
to the approximate nature of the stiffnesses used in this study.

The response of the system depends heavily on v and m. The influences of
¢, and {, on the coupled horizontal and rocking vibration are also significant,
while the influence of the Poisson’s ratio is less prominent, The smmaller the
mass ratio, the flatter becomes the response curve. A low mass ratio, which
is common in practice, gives a resonance frequency factor greater than 1.5;
which is beyond the scope of this paper. The design of foundations for higher
values of 1 requires further study, Thus, in order that the responses of high
speed machine foundations may be predicted, the contact stiffnesses for high
frequency factors should be investigated,
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APPENDIX : LIST OF SYMBOLS

@y = complex stiffnesses; i, j = 1, 2

b = half width of foundation

c = shear wave velocity

exp .= exponential function, e

F = magnitude of excitation force

¥ = complex excitation force function

G = modulus of rigidity of elastic medium

H = height from centroid of foundation to point of application of
force

h = half thickness of foundation

Im = imaginary part of a complex function

i = imaginary number

J = mass polar moment of inertia of foundation per unit length
along z-axis

" = mass of foundation per unit length along z-axis

"y = unbalanced mass per unit length

m = inass ratio

£,0,T, = contact vertical force, contact horizontal force and contact
torque, per unit length along z-axis

P,Q,T = complex functions of contact vertical force, contact horizontal

. force and contact torque, per unit length along z-axis

Re = real part of a complex function

u, = non-dimensional amplitudes for horizontal, vertical and rock-

ing vibration
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u v, W, = horizontal displacement, vertical displacement and rocking —
angle, of the center of the base of the foundation 9 \ /'
Wy, = complex displacernent functions for horizontal, vertical and o o Qg 2 g g o2
rocking vibrations \(&ﬁ( 1 < \sl{< 1| e
u,v,¥ = amplitudes of horizontal, vertical and recking vibrations 0 °
XNZ = coordinate axes ;hr E
§.,5,,8; = phase angles 3 3
- o) a -]
£ = eccentricity of unbalanced mass n, " 8o, 7 ° , " 8, ©
1 = hfb
L - Hb \ | , \
= frequency factor, bS3fc = e - Q
) oo | 19 2 g
v = Poisson’s ratio s & & <
. &
Q = angular velocity —— K ) - ™ .
p = -mass density of elastic medium o ' 2 i
e g
F; N T ° ng o = 5 °
a2 a
[=] L3
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Fig. 4. Amplitudes versus frequency factors for J; = 0.10
& {7 = 0.45 (horizontal vibration).

equency factors (vertical

Fig. 3. Amplitudes versus ‘fre
vibration).
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KARASUDHI, SON AND LEE
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Fig. 21. Amplitudes versus frequency factors for {1 =050
& £ = 2,00 (rocking vibration),
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